Hostname: page-component-7f64f4797f-pffzl Total loading time: 0 Render date: 2025-11-05T11:48:38.317Z Has data issue: false hasContentIssue false

Cognition in motion: Functional internal models as an evolutionary scaffold in cognitive control

Published online by Cambridge University Press:  03 November 2025

Malte Schilling*
Affiliation:
Autonomous Intelligent Systems Group, Computer Science Department, University of Münster, Münster, Germany malte.schilling@uni-muenster.de
Benjamin Risse
Affiliation:
Computer Vision & Machine Learning Systems Group, Institute for Geoinformatics & Institute for Computer Science, University of Münster, Münster, Germany b.risse@uni-muenster.de
*
*Corresponding author.

Abstract

We argue that cognitive evolution is rooted in the development of distributed functional internal models within hierarchical, decentralized, and multimodal sensorimotor loops. Based on an embodied cognition perspective, we emphasize how these models initially evolved to support adaptive behavior and can be flexibly recruited for higher cognitive functions. This perspective complements the proposed sensory-driven and vision-centric account.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33(4), 245266.CrossRefGoogle ScholarPubMed
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617645.CrossRefGoogle ScholarPubMed
Bavelier, D., & Neville, H. J. (2002). Cross-modal plasticity: Where and how?. Nature Reviews Neuroscience, 3(6), 443452.CrossRefGoogle ScholarPubMed
Buehlmann, C., Mangan, M., & Graham, P. (2020). Multimodal interactions in insect navigation. Animal Cognition, 23, 11291141.CrossRefGoogle ScholarPubMed
Desai, R. H., Reilly, M., & van Dam, W. (2018). The multifaceted abstract brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1752), 20170122. https://doi.org/10.1098/rstb.2017.0122 CrossRefGoogle ScholarPubMed
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M. A. R., Kram, R., & Lehman, S. (2000). How animals move: An integrative view. Science, 288(5463), 100106. https://doi.org/10.1126/science.288.5463.100.CrossRefGoogle ScholarPubMed
Dürr, V., & Schilling, M. (2018). Transfer of spatial contact information among limbs and the notion of peripersonal space in insects. Frontiers in Computational Neuroscience, 12, 101. https://doi.org/10.3389/fncom.2018.00101.CrossRefGoogle ScholarPubMed
Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162169.CrossRefGoogle ScholarPubMed
McFarland, D., & Bösser, T. (1993). Intelligent behavior in animals and robots. MIT Press.CrossRefGoogle Scholar
McNamee, D., & Wolpert, D. M. (2019). Internal models in biological control. Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 339364.CrossRefGoogle ScholarPubMed
Merel, J., Botvinick, M., & Wayne, G. (2019). Hierarchical motor control in mammals and machines. Nature Communications, 10(1), 5489.CrossRefGoogle ScholarPubMed
Schilling, M., Paskarbeit, J., Ritter, H., Schneider, A., & Cruse, H. (2021). From adaptive locomotion to predictive action selection–cognitive control for a six-legged walker. IEEE Transactions on Robotics, 38(2), 666682 CrossRefGoogle Scholar
Webb, B. (2004). Neural mechanisms for prediction: Do insects have forward models?. Trends in Neurosciences, 27(5), 278282. http://dx.doi.org/10.1016/j.tins.2004.03.004.CrossRefGoogle ScholarPubMed