Hostname: page-component-7f64f4797f-9t7q9 Total loading time: 0 Render date: 2025-11-05T14:57:10.825Z Has data issue: false hasContentIssue false

From biological vision to artificial intelligence: The role of foundational predictive processing

Published online by Cambridge University Press:  03 November 2025

Fernando Marmolejo-Ramos*
Affiliation:
College of Education, Psychology, and Social Work, Flinders University, Adelaide, Australia fernando.marmolejoramos@flinders.edu.au alejandra.ciria@unam.mx
Alejandra Ciria
Affiliation:
Facultad de Psicología, Universidad Nacional Autónoma de México, México City, México
*
*Corresponding author.

Abstract

This commentary integrates Coombs and Trestman’s trait-linkage hypothesis with Teufel and Fletcher’s neurocomputational predictive framework to propose that high-resolution visual systems operate as intrinsic bottom-up predictive mechanisms. By merging these concepts, we emphasize the significance of early sensory prediction in perception and provide a biologically inspired foundation for developing more adaptive, embodied, and cognitively resilient artificial intelligence (AI) systems.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Choi, C., Lee, G. J., Chang, S., Song, Y. M., & Kim, D. H. (2024). Inspiration from visual Ecology for advancing multifunctional robotic vision systems: Bio-inspired electronic eyes and neuromorphic image sensors. Advanced Materials, 36(48), 2412252. https://doi.org/10.1002/adma.202412252 CrossRefGoogle ScholarPubMed
Huang, J. Y., & Protti, D. A. (2016). The impact of inhibitory mechanisms in the inner retina on spatial tuning of RGCs. Scientific Reports, 6(1), 21966. https://doi.org/10.1038/srep21966 CrossRefGoogle ScholarPubMed
Johnston, J., Seibel, S. H., Darnet, L. S. A., Renninger, S., Orger, M., & Lagnado, L. (2019). A retinal circuit generating a dynamic predictive code for oriented features. Neuron, 102(6), 12111222. https://doi.org/10.1016/j.neuron.2019.04.002 CrossRefGoogle ScholarPubMed
Teufel, C., & Fletcher, P. C. (2020). Forms of prediction in the nervous system. Nature Reviews Neuroscience, 21(4), 231242.CrossRefGoogle ScholarPubMed
Wiederman, S. D., Fabian, J. M., Dunbier, J. R., & O’Carroll, D. C. (2017). A predictive focus of gain modulation encodes target trajectories in insect vision. eLife, 6, e26478. https://doi.org/10.7554/eLife.26478 CrossRefGoogle ScholarPubMed
Zhang, J., Wang, K., Yao, M., Xu, H., Zhou, P., Xu, B., & Li, G. (2024). Enhancing robustness of spiking neural networks through retina-like coding and memory-based neurons. TechRxiv. https://doi.org/10.36227/techrxiv.172954154.47048424/v1 CrossRefGoogle Scholar
Zheng, Z., Huang, Y., Yu, Y., Zhu, Z., Tang, J., Yu, Z., & Jin, Y. (2025). SpiLiFormer: Enhancing spiking transformers with lateral inhibition. arXiv preprint arXiv:2503.15986.Google Scholar
Zhu, S., Xie, T., Lv, Z., Leng, Y. B., Zhang, Y. Q., Xu, R., … & Han, S. T. (2024). Hierarchies in visual pathway: Functions and inspired artificial vision. Advanced Materials, 36(6), 2301986. https://doi.org/10.1002/adma.202301986 CrossRefGoogle ScholarPubMed