Hostname: page-component-797576ffbb-42xl8 Total loading time: 0 Render date: 2023-12-02T01:44:26.053Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science

Published online by Cambridge University Press:  25 August 2011

Nick Chater
Behavioural Science Group, Warwick Business School, University of Warwick, Coventry CV4 7AL, United Kingdom.
Noah Goodman
Department of Psychology, Stanford University, Stanford, CA 94305. ngoodman@stanford.edu
Thomas L. Griffiths
Department of Psychology, University of California, Berkeley, CA 94720-1650. tom_griffiths@berkeley.edu
Charles Kemp
Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213. ckemp@cmu.edu
Mike Oaksford
Department of Psychological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom.
Joshua B. Tenenbaum
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139. jbt@mit.edu


If Bayesian Fundamentalism existed, Jones & Love's (J&L's) arguments would provide a necessary corrective. But it does not. Bayesian cognitive science is deeply concerned with characterizing algorithms and representations, and, ultimately, implementations in neural circuits; it pays close attention to environmental structure and the constraints of behavioral data, when available; and it rigorously compares multiple models, both within and across papers. J&L's recommendation of Bayesian Enlightenment corresponds to past, present, and, we hope, future practice in Bayesian cognitive science.

Open Peer Commentary
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Ali, N., Chater, N. & Oaksford, M. (2011) The mental representation of causal conditional reasoning: Mental models or causal models. Cognition 119:403–18.Google Scholar
Ali, N., Schlottmann, A., Shaw, C., Chater, N. & Oaksford, M. (2010) Conditionals and causal discounting in children. In: Cognition and conditionals: Probability and logic in human thinking, ed. Oaksford, M. & Chater, N., pp. 117–34. Oxford University Press.Google Scholar
Anderson, J. R. (1990) The adaptive character of thought. Erlbaum.Google Scholar
Anderson, J. R. (1991a) Is human cognition adaptive? Behavioral and Brain Sciences 14:471517.Google Scholar
Bishop, C. M. (1996) Neural networks for pattern recognition. Oxford University Press.Google Scholar
Chater, N. & Oaksford, M. (1990) Autonomy, implementation and cognitive architecture: A reply to Fodor and Pylyshyn. Cognition 34:93107.Google Scholar
Chater, N., Oaksford, M., Nakisa, R. & Redington, M. (2003) Fast, frugal, and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes 90:6386.Google Scholar
Chater, N. & Vitányi, P. (2007) “Ideal learning” of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology 51:135–63.Google Scholar
Courville, A. C., Daw, N. D. & Touretzky, D. S. (2006) Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences 10:294300.Google Scholar
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54.Google Scholar
Foraker, S., Regier, T., Khetarpal, N., Perfors, A. & Tenenbaum, J. B. (2009) Indirect evidence and the poverty of the stimulus: The case of anaphoric one. Cognitive Science 33:287300.Google Scholar
Garey, M. R. & Johnson, D. S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman.Google Scholar
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003) Bayesian data analysis, 2nd edition. Chapman and Hall.Google Scholar
Goodman, N. D., Mansinghka, V. K. & Tenenbaum, J. B. (2007) Learning grounded causal models. In: Proceedings of the 29th Annual Conference of the Cognitive Science Society, ed. McNamara, D. S. & Trafton, G., pp. 305–10. Erlbaum.Google Scholar
Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K. & Tenenbaum, J. B. (2008a) Church: A language for generative models. In: Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 9–12, 2008, Helsinki, Finland, ed. McAllester, D. & Myllymaki, P., pp. 220–29. AUAI Press.Google Scholar
Goodman, N. D., Tenenbaum, J. B., Feldman, J. & Griffiths, T. L. (2008b) A rational analysis of rule-based concept learning. Cognitive Science 32(1):108–54.Google Scholar
Goodman, N. D., Ullman, T. D. & Tenenbaum, J. B. (2011) Learning a theory of causality. Psychological Review 118:110–19.Google Scholar
Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir, T. & Danks, D. (2004) A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review 111(1):332.Google Scholar
Griffiths, T. L. & Ghahramani, Z. (2006) Infinite latent feature models and the Indian buffet process. In: Advances in neural information processing systems, vol. 18, ed. Weiss, J., Schölkopf, B. & Platt, J., pp. 475–82. MIT Press.Google Scholar
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences 14(8):357–64.Google Scholar
Griffiths, T. L., Kemp, C. & Tenenbaum, J. B. (2008a) Bayesian models of cognition. In: Cambridge handbook of computational psychology, ed. Sun, R., pp. 59100. Cambridge University Press.Google Scholar
Griffiths, T. L. & Tenenbaum, J. B. (2009) Theory-based causal induction. Psychological Review 116:661716.Google Scholar
Heller, K., Sanborn, A. N. & Chater, N. (2009) Hierarchical learning of dimensional biases in human categorization. In: Advances in neural information processing systems, vol. 22, ed. Lafferty, J. & Williams, C.. pp. 727–35. MIT Press.Google Scholar
Hsu, A. & Chater, N. (2010) The logical problem of language acquisition: A probabilistic perspective. Cognitive Science 34:9721016.Google Scholar
Hsu, A., Chater, N. & Vitányi, P. M. B. (in press) The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis. Cognition.Google Scholar
Johnson, M., Griffiths, T. L. & Goldwater, S. (2007) Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models. In: Advances in neural information processing systems, vol. 19, ed. Schölkopf, B., Platt, J. & Hofmann, T., pp. 641–48. MIT Press.Google Scholar
Kamin, L. J. (1969) Predictability, surprise, attention, and conditioning. In: Punishment and aversive behavior, ed. Campbell, B. A. & Church, R. M., pp. 279–96. Appleton-Century-Crofts.Google Scholar
Kemp, C. & Tenenbaum, J. B. (2008) The discovery of structural form. Proceedings of the National Academy of Sciences USA 105:10687–692.Google Scholar
Kemp, C. & Tenenbaum, J. B. (2009) Structured statistical models of inductive reasoning. Psychological Review 116:2058.Google Scholar
Kemp, C., Goodman, N. D. & Tenenbaum, J. B. (2010a) Learning to learn causal relations. Cognitive Science 34:11851243.Google Scholar
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. & Ueda, N. (2006) Learning systems of concepts with an infinite relational model. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, ed. Cohn, A., pp. 381–88. AAAI Press.Google Scholar
Kemp, C., Tenenbaum, J. B., Niyogi, S. & Griffiths, T. L. (2010b) A probabilistic model of theory formation. Cognition 114(2):165–96.Google Scholar
MacKay, D. (2002) Information theory, inference, and learning algorithms. Cambridge University Press.Google Scholar
Manning, C. & Schütze, H. (1999) Foundations of statistical natural language processing. MIT Press.Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.Google Scholar
McClelland, J. L. (1998) Connectionist models and Bayesian inference. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., pp. 2153. Oxford University Press.Google Scholar
McClelland, J. L. (2010) Emergence in cognitive science. Topics in Cognitive Science 2:751–70.Google Scholar
Neal, R. M. (1992) Connectionist learning of belief networks. Artificial Intelligence 56:71113.Google Scholar
Oaksford, M. & Chater, N. (1994) A rational analysis of the selection task as optimal data selection. Psychological Review 101:608–31.Google Scholar
Oaksford, M. & Chater, N., ed. (1998b) Rational models of cognition. Oxford University Press.Google Scholar
Oaksford, M. & Chater, N. (2003) Optimal data selection: Revision, review, and reevaluation. Psychonomic Bulletin and Review 10:289318.Google Scholar
Oaksford, M. & Chater, N. (2010) Conditionals and constraint satisfaction: Reconciling mental models and the probabilistic approach? In: Cognition and conditionals: Probability and logic in human thinking, ed. Oaksford, M. & Chater, N., pp. 309–34. Oxford University Press.Google Scholar
Pearl, J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.Google Scholar
Perfors, A., Tenenbaum, J. B. & Regier, T. (2011) The learnability of abstract syntactic principles. Cognition 118:306–38.Google Scholar
Perfors, A., Tenenbaum, J. & Wonnacott, E. (2010) Variability, negative evidence, and the acquisition of verb argument constructions. Journal of Child Language 37:607–42.Google Scholar
Rehder, B. & Burnett, R. (2005) Feature inference and the causal structure of categories. Cognitive Psychology 50:264314.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical conditioning II: Current theory and research, ed. Black, A. H. & Prokasy, W. F., pp. 6499. Appleton-Century-Crofts.Google Scholar
Russell, S. & Norvig, P. (2011) Artificial intelligence: A modern approach, 3rd edition. Prentice-Hall.Google Scholar
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. (2010a) Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review 117:1144–67.Google Scholar
Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. (2010) Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin and Review 17:443–64.Google Scholar
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–85.Google Scholar
Vul, E., Goodman, N. D., Griffiths, T. L. & Tenenbaum, J. B. (2009a) One and done: Optimal decisions from very few samples. In: Proceedings of the 31st Annual Meeting of the Cognitive Science Society, ed. Taatgen, N. & van Rijn, H., pp. 148–53. Erlbaum.Google Scholar
Vul, E., Hanus, D. & Kanwisher, N. (2009b) Attention as inference: Selection is probabilistic, responses are all-or-none samples. Journal of Experimental Psychology: General 138:546–60.Google Scholar
Walsh, C. R. & Sloman, S. A. (2008) Updating beliefs with causal models: Violations of screening off. In: Memory and Mind: A festschrift for Gordon H. Bower, ed. Gluck, M. A., Anderson, J. R. & Kosslyn, S. M., pp. 345–57. Erlbaum.Google Scholar
Yuille, A. & Kersten, D. (2006) Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences 10:301308.Google Scholar