Hostname: page-component-7f64f4797f-d87pz Total loading time: 0 Render date: 2025-11-05T11:43:48.186Z Has data issue: false hasContentIssue false

Multi-trait convergent trends in the evolution of brains and cognition

Published online by Cambridge University Press:  03 November 2025

Sheryl Coombs*
Affiliation:
Department of Biological Sciences, Bowling Green State University, Bowling Green, USA
Michael Trestman
Affiliation:
Independent Researcher, USA scoombs@bgsu.edu
*
*Corresponding author.

Abstract

Our target article proposed that vertebrates, cephalopod mollusks, and euarthropods independently converged onto high levels of brain and cognitive complexity and that this macroevolutionary trend was coupled with and facilitated by the acquisition of a small set of pivotal traits, used in visuomotor control of three-dimensional and targeted movements. In response to commentaries that challenged our working premise and conclusions, we (1) use the concept of aggregate complexity to define brain and cognitive complexity and dispel misconceptions about anthropocentric bias, (2) call attention to the explanatory value and power of convergence as an important evolutionary concept, (3) highlight certain architectural and organizational features of the nervous system as scaffolds for the evolutionary expansion of behavioral and cognitive complexity, and (4) consider the phylogenetic distribution of phenomenal consciousness in relation to our findings. We also try to foster a greater appreciation for cognition as a process that involves whole animals as aggregate systems and that requires an extended repertoire of laws and principles to understand its evolution.

Information

Type
Author’s Response
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, C., & Trestman, M. (2024). Animal consciousness. The Stanford encyclopedia of philosophy, Edward N. Zalta & Uri Nodelman (eds.). https://plato.stanford.edu/archives/sum2024/entries/consciousness-animal/ Google Scholar
Barron, A. B., Halina, M., & Klein, C. (2023). Transitions in cognitive evolution. Proceedings of the Royal Society B, 290(2002), 20230671. https://doi.org/10.1098/rspb.2023.0671 CrossRefGoogle ScholarPubMed
Barron, A. B., & Klein, C. (2016). What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences - PNAS, 113(18), 49004908. https://doi.org/10.1073/pnas.1520084113 CrossRefGoogle ScholarPubMed
Benesh, D. P., Parker, G. A., Chubb, J. C., & Lafferty, K. D. (2021). Trade-offs with growth limit host range in complex life-cycle helminths. The American Naturalist, 197(2), E40E54. https://doi.org/10.1086/712249 CrossRefGoogle ScholarPubMed
Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227247. https://doi.org/10.1017/S0140525X00038188 CrossRefGoogle Scholar
Cabrera, A. A., Bérubé, M., Lopes, X. M., Louis, M., Oosting, T., Rey-Iglesia, A., Rivera-León, V. E., Székely, D., Lorenzen, E. D., & Palsbøll, P. J. (2021). A genetic perspective on cetacean evolution. Annual Review of Ecology, Evolution, and Systematics, 52(1), 131151. https://doi.org/10.1146/annurev-ecolsys-012021-105003 CrossRefGoogle Scholar
Capra, F. (1996). The web of life: A new scientific understanding of living systems (1st ed.). Anchor Books.Google Scholar
Carr, M., Hopkins, K., & Ginger, M. L. (2023). The protistan origins of animals and fungi. In Pöggeler, S., & James, T. (Eds.), Evolution of fungi and fungal-like organisms (pp. 338). Springer International Publishing. https://doi.org/10.1007/978-3-031-29199-9_1 CrossRefGoogle Scholar
Chittka, L. (2022). The mind of a bee (1st ed.). Princeton University Press. https://doi.org/10.1515/9780691236247 CrossRefGoogle Scholar
Coombs, S. (2023). A multisensory perspective on near-field detection and localization of hydroacoustic sources. The Journal of the Acoustical Society of America, 153(5), 25452561. https://doi.org/10.1121/10.0017926 CrossRefGoogle Scholar
Coombs, S., & Montgomery, J. (2014). The role of flow and the lateral line in the multisensory guidance of orienting behaviors. Flow sensing in air and water (pp. 65101). Springer Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_3 CrossRefGoogle Scholar
Fairclough, S. R. (2015). Choanoflagellates: Perspective on the origin of animal multicellularity. In Ruiz-Trillo, I., & Nedelcu, A. M. (Eds.), Evolutionary transitions to multicellular life (pp. 99116). Springer Netherlands. https://doi.org/10.1007/978-94-017-9642-2_5 CrossRefGoogle Scholar
Farris, S. M. (2008). Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain, Behavior and Evolution, 72(2), 106122. https://doi.org/10.1159/000151471 CrossRefGoogle ScholarPubMed
Feinberg, T. E., & Mallatt, J. (2016). The ancient origins of consciousness : How the brain created experience. The MIT Press.CrossRefGoogle Scholar
Feinberg, T. E., & Mallatt, J. (2020). Phenomenal consciousness and emergence: Eliminating the explanatory gap. Frontiers in Psychology, 11, 1041. https://doi.org/10.3389/fpsyg.2020.01041 CrossRefGoogle ScholarPubMed
Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution.The Behavioral and Brain Sciences, 24(2), 263278. https://doi.org/10.1017/S0140525X01003958 CrossRefGoogle ScholarPubMed
Ginsburg, S., & Jablonka, E. (2021). Evolutionary transitions in learning and cognition.Philosophical Transactions of the Royal Society B, 376(1821), 20190766. https://doi.org/10.1098/rstb.2019.0766 CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge University Press.Google Scholar
Gregory, T. R. (2008). Evolutionary trends. Evolution: Education and Outreach, 1(3), 259273.Google Scholar
Hartline, H. K. (1969). Visual receptors and retinal interaction. Science (American Association for the Advancement of Science), 164(3877), 270278. https://doi.org/10.1126/science.164.3877.270 Google ScholarPubMed
Hassan, E. S. (1989). Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish anoptichthys jordani. Mechanosensory lateral line (pp. 217227). Springer New York. https://doi.org/10.1007/978-1-4612-3560-6_10 CrossRefGoogle Scholar
Hodos, W., & Campbell, C. B. G. (1969). Scala naturae: Why there is no theory in comparative psychology. Psychological Review, 76(4), 337.CrossRefGoogle Scholar
Hosoya, T., Baccus, S. A., & Meister, M. (2005). Dynamic predictive coding by the retina. American. Journal of Ophthalmology, 140(5), 969. https://doi.org/10.1016/j.ajo.2005.08.052 Google Scholar
Husserl, E., & Churchill, J. S. (1964). The phenomenology of internal time-consciousness. Indiana University Press.Google Scholar
James, W. (1982/1968). The self. The Self in Social Interaction, 1, 4149.Google Scholar
Jékely, G., Godfrey-Smith, P., & Keijzer, F. (2021). Reafference and the origin of the self in early nervous system evolution. Philosophical Transactions of the Royal Society of London. Series B.Biological Sciences, 376(1821), 20190764. https://doi.org/10.1098/rstb.2019.0764 CrossRefGoogle ScholarPubMed
Joffily, M., & Coricelli, G. (2013). Emotional valence and the free-energy principle. PLoS Computational Biology, 9(6), e1. https://doi.org/10.1371/journal.pcbi.1003094 CrossRefGoogle ScholarPubMed
Johnston, J., Seibel, S., Darnet, L. S. A., Renninger, S., Orger, M., & Lagnado, L. (2019). A retinal circuit generating a dynamic predictive code for oriented features. Neuron, 102(6), 12111222. https://doi.org/10.1016/j.neuron.2019.04.002 CrossRefGoogle ScholarPubMed
King, A. J. (2004). The superior colliculus. Current Biology, 14(9), R335R338.CrossRefGoogle ScholarPubMed
Koehl, M. A. R. (2021). Selective factors in the evolution of multicellularity in choanoflagellates.Journal of Experimental Zoology. Part B, Molecular and Developmental Evolution, 336(3), 315326. https://doi.org/10.1002/jez.b.22941 CrossRefGoogle ScholarPubMed
Krakauer, D. C. (2024). The complex world: An introduction to the foundations of complexity science. SFI Press.CrossRefGoogle Scholar
Liu, Y., & Konopka, G. (2020). An integrative understanding of comparative cognition: Lessons from human brain evolution. Integrative and Comparative Biology, 60(4), 9911006. https://doi.org/10.1093/icb/icaa109 CrossRefGoogle ScholarPubMed
Lyon, P., Keijzer, F., Arendt, D., & Levin, M. (2021). Reframing cognition: Getting down to biological basics. Philosophical Transactions of the Royal Society B, 376(1820), 20. https://doi.org/10.1098/rstb.2019.0750 CrossRefGoogle ScholarPubMed
Manson, S. M. (2001). Simplifying complexity: A review of complexity theory. Geoforum, 32(3), 405414. https://doi.org/10.1016/S0016-7185(00)00035-X CrossRefGoogle Scholar
Marshall, C. R. (2006). Explaining the cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34(1), 355384. https://doi.org/10.1146/annurev.earth.33.031504.103001 CrossRefGoogle Scholar
Maynard Smith, J., & Szathmary, E. (1995). The major transitions in evolution. Oxford University Press, Incorporated.Google Scholar
McShea, D. W. (1996). Perspective metazoan complexity and evolution: Is there a trend? Evolution, 50(2), 477492.Google ScholarPubMed
McShea, D. W. (2021). Evolution of complexity. Evolutionary developmental biology: A reference guide (pp. 169179). Springer CrossRefGoogle Scholar
Menzel, R., Greggers, U., Smith, A., Berger, S., Brandt, R., Brunke, S., Bundrock, G., Hulse, S., Plumpe, T., & Schaupp, F. (2005). Honey bees navigate according to a map-like spatial memory. Proceedings of the National Academy of Sciences - PNAS, 102(8), 3040–3045. https://doi.org/10.1073/pnas.0408550102 Google ScholarPubMed
Merel, J., Botvinick, M., & Wayne, G. (2019). Hierarchical motor control in mammals and machines. Nature Communications, 10(1), 5489–12. https://doi.org/10.1038/s41467-019-13239-6 CrossRefGoogle ScholarPubMed
Merker, B. (2005). The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution. Consciousness and Cognition, 14(1), 89114. https://doi.org/10.1016/S1053-8100(03)00002-3 CrossRefGoogle ScholarPubMed
Merker, B. (2013). The efference cascade, consciousness, and its self: Naturalizing the first person pivot of action control. Frontiers in Psychology, 4, 501. https://doi.org/10.3389/fpsyg.2013.00501 CrossRefGoogle ScholarPubMed
Nagel, T. (Ed.). (1980). What is it like to be a bat? The language and thought series. Cambridge, MA: Harvard University Press, 159–168.Google Scholar
Nikolaou, N., & Meyer, M. P. (2015). Lamination speeds the functional development of visual circuits. Neuron (Cambridge, Mass.), 88(5), 9991013. https://doi.org/10.1016/j.neuron.2015.10.020 CrossRefGoogle ScholarPubMed
Nilsson, D. (2022). The evolution of visual roles – ancient vision versus object vision. Frontiers in Neuroanatomy, 16, 789375. https://doi.org/10.3389/fnana.2022.789375 CrossRefGoogle ScholarPubMed
Northcutt, R. G. (2002). Understanding vertebrate brain evolution. Integrative and Comparative Biology, 42(4), 743756. https://doi.org/10.1093/icb/42.4.743 CrossRefGoogle ScholarPubMed
Orlovsky, G. N., Deliagina, T. G., & Grillner, S. (1999). Neuronal control of locomotion. Oxford Univ. Press.Google Scholar
Parker, A. (2004). In the blink of an eye : How vision sparked the big bang of evolution. Basic Books.Google Scholar
Picard, M. A. L., Vicoso, B., Bertrand, S., & Escriva, H. (2021). Diversity of modes of reproduction and sex determination systems in invertebrates, and the putative contribution of genetic conflict. Genes, 12(8), 1136. https://doi.org/10.3390/genes12081136 CrossRefGoogle ScholarPubMed
Ros-Rocher, N., & Brunet, T. (2023). What is it like to be a choanoflagellate? sensation, processing and behavior in the closest unicellular relatives of animals. Animal Cognition, 26(6), 17671782. https://doi.org/10.1007/s10071-023-01776-z CrossRefGoogle ScholarPubMed
Rudrauf, D., Sergeant-Perthuis, G., Tisserand, Y., Poloudenny, G., Williford, K., & Amorim, M. (2023). The projective consciousness model: Projective geometry at the core of consciousness and the integration of perception, imagination, motivation, emotion, social cognition and action. Brain Sciences, 13(10), 1435. https://doi.org/10.3390/brainsci13101435 CrossRefGoogle ScholarPubMed
Sinnott-Armstrong, M. A., Deanna, R., Pretz, C., Liu, S., Harris, J. C., Dunbar-Wallis, A., Smith, S. D., & Wheeler, L. C. (2022). How to approach the study of syndromes in macroevolution and ecology. Ecology and Evolution, 12(3), e8583–n/a. https://doi.org/10.1002/ece3.8583 CrossRefGoogle Scholar
Smith, M. P., & Harper, D. A. T. (2013). Causes of the cambrian explosion. Science (American Association for the Advancement of Science), 341(6152), 13551356. https://doi.org/10.1126/science.1239450 Google ScholarPubMed
Solms, M., & Friston, K. (2018). How and why consciousness arises: Some considerations from physics and physiology. Journal of Consciousness Studies, 25(5–6), 202238. https://www.ingentaconnect.com/content/imp/jcs/2018/00000025/f0020005/art00009 Google Scholar
Sparks, D. L. (1988). Neural cartography: Sensory and motor maps in the superior colliculus. Brain, Behavior and Evolution, 31(1), 4956. https://doi.org/10.1159/000116575 CrossRefGoogle ScholarPubMed
Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of the Royal Society of London. Series B, Biological Sciences, 216(1205), 427459. https://doi.org/10.1098/rspb.1982.0085 Google ScholarPubMed
Stayton, C. T. (2015). What does convergent evolution mean? the interpretation of convergence and its implications in the search for limits to evolution. Interface Focus, 5(6), 2020150039. https://doi.org/10.1098/rsfs.2015.0039 CrossRefGoogle ScholarPubMed
Striedter, G. F. (2005). Principles of brain evolution. Sinauer Assoc.Google Scholar
Striedter, G. F., & Northcutt, R. G. (2020). Brains through time: A natural history of vertebrates. Oxford University Press. https://doi.org/10.1093/oso/9780195125689.001.0001 Google Scholar
Sweatt, J. D. (2016). Neural plasticity and behavior – sixty years of conceptual advances.Journal of Neurochemistry, 139(S2), 179199. https://doi.org/10.1111/jnc.13580 CrossRefGoogle ScholarPubMed
Teufel, C., & Fletcher, P. C. (2020). Forms of prediction in the nervous system. Nature Reviews. Neuroscience, 21(4), 231242. https://doi.org/10.1038/s41583-020-0275-5 CrossRefGoogle ScholarPubMed
Tinbergen, N. (1963). On aims and methods of ethology. Zeitschrift Für Tierpsychologie, 20(4), 410433.CrossRefGoogle Scholar
Tinbergen, N. (2005). On aims and methods of ethology. Animal Biology (Leiden, Netherlands), 55(4), 297321. https://doi.org/10.1163/157075605774840941 CrossRefGoogle Scholar
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189.CrossRefGoogle ScholarPubMed
Trestman, M. (2013). The cambrian explosion and the origins of embodied cognition. Biological Theory, 8, 8092. https://doi.org/10.1007/s13752-013-0102-6 CrossRefGoogle Scholar
Trestman, M. (2014). The modal breadth of consciousness. Philosophical Psychology, 27(6), 843861.CrossRefGoogle Scholar
Trestman, M. (2017). Minds and bodies in animal evolution. In Andrews, K., & Beck, J. (Eds.), The routledge handbook of philosophy of animal minds (1st ed., pp. 206215). Routledge. https://doi.org/10.4324/9781315742250-20 CrossRefGoogle Scholar
Trestman, M. (2023). Energy and expectation: The dynamics of living consciousness. Biosemiotics, 16(2), 269279. https://doi.org/10.1007/s12304-023-09529-8 CrossRefGoogle Scholar
Umen, J., Goodenough, U., & Heitman, J. (2017). Eukaryotic sexual reproduction evoked “with a little help from my friends”. Cell, 170(6), 10591061.CrossRefGoogle Scholar
von Bernhardi, R., Bernhardi, L. E., & Eugenín, J. (2017). What is neural plasticity? Advances in experimental medicine and biology (pp. 115). Springer International Publishing. https://doi.org/10.1007/978-3-319-62817-2_1 Google Scholar
Windsor, S. P. (2014). Hydrodynamic imaging by blind mexican cavefish. Flow sensing in air and water (pp. 103125). Springer Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_4 CrossRefGoogle Scholar
Yoshimi, J. (2016). Husserlian phenomenology : A unifying interpretation (1st ed.). Springer. https://doi.org/10.1007/978-3-319-26698-5 CrossRefGoogle Scholar
Zahavi, D. (1999). Self-awareness and alterity: A phenomenological investigation. Northwestern University Press.Google Scholar
Zhao, F., Bottjer, D. J., Hu, S., Yin, Z., & Zhu, M. (2013). Complexity and diversity of eyes in early cambrian ecosystems. Scientific Reports, 3(1), 2751. https://doi.org/10.1038/srep02751 CrossRefGoogle ScholarPubMed