Hostname: page-component-7f64f4797f-tldsr Total loading time: 0.001 Render date: 2025-11-05T11:48:23.869Z Has data issue: false hasContentIssue false

Complex brains allow functioning in a complex environment by using information

Published online by Cambridge University Press:  03 November 2025

Cameron Rouse Turner*
Affiliation:
Computational Cognitive Science Lab, Department of Psychology and Department of Computer Science, Princeton University, Princeton, NJ, USA c.rouse.turner@princeton.edu tomg@princeton.edu
Thomas J.H. Morgan
Affiliation:
Institute of Human Origins, Arizona State University, Tempe, AZ, USA thomas.j.h.morgan@asu.edu
Thomas L. Griffiths
Affiliation:
Computational Cognitive Science Lab, Department of Psychology and Department of Computer Science, Princeton University, Princeton, NJ, USA c.rouse.turner@princeton.edu tomg@princeton.edu
*
*Corresponding author.

Abstract

Collating the neural traits possessed by taxa provides valuable evidence about brain evolution. However, to get the full scientific benefit, we must pair it with an understanding of the selection pressures driving brain complexity. This can be achieved by considering the heterogeneity of the animal’s environment alongside the reliability of information. A complex environment selects for a complex brain.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bartlett, P. L., & Maass, W. (2003). Vapnik-Chervonenkis dimension of neural nets. In Arbib, M. A. (Ed.), The handbook of brain theory and neural networks. MIT Press.Google Scholar
Garm, A., Bielecki, J., Petie, R., & Nilsson, D. E. (2016). Hunting in bioluminescent light: Vision in the nocturnal box jellyfish Copula sivickisi. Frontiers in Physiology, 7, 99. https://doi.org/10.3389/fphys.2016.00099 CrossRefGoogle ScholarPubMed
Godfrey-Smith, P. (1998). Complexity and the function of mind in nature. Cambridge University Press.Google Scholar
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B., Moczek, A., Jablonka, E., & Odling-Smee, J. (2015). The extended evolutionary synthesis: Its structure, assumptions and predictions. Proceedings of the Royal Society B: Biological Sciences, 282, 20151019. https://doi.org/10.1098/rspb.2015.1019 CrossRefGoogle ScholarPubMed
Levins, R. (1968). Evolution in changing environments. Princeton University Press.CrossRefGoogle Scholar
Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biology Letters, 5, 130133. https://doi.org/10.1098/rsbl.2008.0621 CrossRefGoogle ScholarPubMed
Sterelny, K. (1997). Where does thinking come from? A commentary on Peter Godfrey-Smith’s Complexity and the function of mind in nature. Biology & Philosophy, 12, 551566. https://doi.org/10.1023/A:1006572119820 CrossRefGoogle Scholar
Sterling, P., & Laughlin, S. (2015). Principles of neural design. MIT Press.CrossRefGoogle Scholar
Tinbergen, N. (1963). On aims and methods in ethology. Zeitschrift für Tierpsychologie, 20, 410433. https://doi.org/10.1111/j.1439-0310.1963.tb01161.x CrossRefGoogle Scholar
Turner, C. R., Morgan, T. J. H., & Griffiths, T. L. (2024). Environmental complexity and regularity shape the evolution of cognition. Proceedings of the Royal Society B: Biological Sciences, 291, 20241524. https://doi.org/10.1098/rspb.2024.1524 CrossRefGoogle ScholarPubMed