Skip to main content
×
×
Home

The imaginary fundamentalists: The unshocking truth about Bayesian cognitive science

  • Nick Chater (a1), Noah Goodman (a2), Thomas L. Griffiths (a3), Charles Kemp (a4), Mike Oaksford (a5) and Joshua B. Tenenbaum (a6)...
Abstract

If Bayesian Fundamentalism existed, Jones & Love's (J&L's) arguments would provide a necessary corrective. But it does not. Bayesian cognitive science is deeply concerned with characterizing algorithms and representations, and, ultimately, implementations in neural circuits; it pays close attention to environmental structure and the constraints of behavioral data, when available; and it rigorously compares multiple models, both within and across papers. J&L's recommendation of Bayesian Enlightenment corresponds to past, present, and, we hope, future practice in Bayesian cognitive science.

Copyright
References
Hide All
Ali, N., Chater, N. & Oaksford, M. (2011) The mental representation of causal conditional reasoning: Mental models or causal models. Cognition 119:403–18.
Ali, N., Schlottmann, A., Shaw, C., Chater, N. & Oaksford, M. (2010) Conditionals and causal discounting in children. In: Cognition and conditionals: Probability and logic in human thinking, ed. Oaksford, M. & Chater, N., pp. 117–34. Oxford University Press.
Anderson, J. R. (1990) The adaptive character of thought. Erlbaum.
Anderson, J. R. (1991a) Is human cognition adaptive? Behavioral and Brain Sciences 14:471517.
Bishop, C. M. (1996) Neural networks for pattern recognition. Oxford University Press.
Chater, N. & Oaksford, M. (1990) Autonomy, implementation and cognitive architecture: A reply to Fodor and Pylyshyn. Cognition 34:93107.
Chater, N., Oaksford, M., Nakisa, R. & Redington, M. (2003) Fast, frugal, and rational: How rational norms explain behavior. Organizational Behavior and Human Decision Processes 90:6386.
Chater, N. & Vitányi, P. (2007) “Ideal learning” of natural language: Positive results about learning from positive evidence. Journal of Mathematical Psychology 51:135–63.
Courville, A. C., Daw, N. D. & Touretzky, D. S. (2006) Bayesian theories of conditioning in a changing world. Trends in Cognitive Sciences 10:294300.
Feldman, J. A. & Ballard, D. H. (1982) Connectionist models and their properties. Cognitive Science 6:205–54.
Foraker, S., Regier, T., Khetarpal, N., Perfors, A. & Tenenbaum, J. B. (2009) Indirect evidence and the poverty of the stimulus: The case of anaphoric one. Cognitive Science 33:287300.
Garey, M. R. & Johnson, D. S. (1979) Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman.
Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003) Bayesian data analysis, 2nd edition. Chapman and Hall.
Goodman, N. D., Mansinghka, V. K. & Tenenbaum, J. B. (2007) Learning grounded causal models. In: Proceedings of the 29th Annual Conference of the Cognitive Science Society, ed. McNamara, D. S. & Trafton, G., pp. 305–10. Erlbaum.
Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K. & Tenenbaum, J. B. (2008a) Church: A language for generative models. In: Proceedings of the Twenty-Fourth Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 9–12, 2008, Helsinki, Finland, ed. McAllester, D. & Myllymaki, P., pp. 220–29. AUAI Press.
Goodman, N. D., Tenenbaum, J. B., Feldman, J. & Griffiths, T. L. (2008b) A rational analysis of rule-based concept learning. Cognitive Science 32(1):108–54.
Goodman, N. D., Ullman, T. D. & Tenenbaum, J. B. (2011) Learning a theory of causality. Psychological Review 118:110–19.
Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir, T. & Danks, D. (2004) A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review 111(1):332.
Griffiths, T. L. & Ghahramani, Z. (2006) Infinite latent feature models and the Indian buffet process. In: Advances in neural information processing systems, vol. 18, ed. Weiss, J., Schölkopf, B. & Platt, J., pp. 475–82. MIT Press.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences 14(8):357–64.
Griffiths, T. L., Kemp, C. & Tenenbaum, J. B. (2008a) Bayesian models of cognition. In: Cambridge handbook of computational psychology, ed. Sun, R., pp. 59100. Cambridge University Press.
Griffiths, T. L. & Tenenbaum, J. B. (2009) Theory-based causal induction. Psychological Review 116:661716.
Heller, K., Sanborn, A. N. & Chater, N. (2009) Hierarchical learning of dimensional biases in human categorization. In: Advances in neural information processing systems, vol. 22, ed. Lafferty, J. & Williams, C.. pp. 727–35. MIT Press.
Hsu, A. & Chater, N. (2010) The logical problem of language acquisition: A probabilistic perspective. Cognitive Science 34:9721016.
Hsu, A., Chater, N. & Vitányi, P. M. B. (in press) The probabilistic analysis of language acquisition: Theoretical, computational, and experimental analysis. Cognition.
Johnson, M., Griffiths, T. L. & Goldwater, S. (2007) Adaptor grammars: A framework for specifying compositional nonparametric Bayesian models. In: Advances in neural information processing systems, vol. 19, ed. Schölkopf, B., Platt, J. & Hofmann, T., pp. 641–48. MIT Press.
Kamin, L. J. (1969) Predictability, surprise, attention, and conditioning. In: Punishment and aversive behavior, ed. Campbell, B. A. & Church, R. M., pp. 279–96. Appleton-Century-Crofts.
Kemp, C. & Tenenbaum, J. B. (2008) The discovery of structural form. Proceedings of the National Academy of Sciences USA 105:10687–692.
Kemp, C. & Tenenbaum, J. B. (2009) Structured statistical models of inductive reasoning. Psychological Review 116:2058.
Kemp, C., Goodman, N. D. & Tenenbaum, J. B. (2010a) Learning to learn causal relations. Cognitive Science 34:11851243.
Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T. & Ueda, N. (2006) Learning systems of concepts with an infinite relational model. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 1, ed. Cohn, A., pp. 381–88. AAAI Press.
Kemp, C., Tenenbaum, J. B., Niyogi, S. & Griffiths, T. L. (2010b) A probabilistic model of theory formation. Cognition 114(2):165–96.
MacKay, D. (2002) Information theory, inference, and learning algorithms. Cambridge University Press.
Manning, C. & Schütze, H. (1999) Foundations of statistical natural language processing. MIT Press.
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.
McClelland, J. L. (1998) Connectionist models and Bayesian inference. In: Rational models of cognition, ed. Oaksford, M. & Chater, N., pp. 2153. Oxford University Press.
McClelland, J. L. (2010) Emergence in cognitive science. Topics in Cognitive Science 2:751–70.
Neal, R. M. (1992) Connectionist learning of belief networks. Artificial Intelligence 56:71113.
Oaksford, M. & Chater, N. (1994) A rational analysis of the selection task as optimal data selection. Psychological Review 101:608–31.
Oaksford, M. & Chater, N., ed. (1998b) Rational models of cognition. Oxford University Press.
Oaksford, M. & Chater, N. (2003) Optimal data selection: Revision, review, and reevaluation. Psychonomic Bulletin and Review 10:289318.
Oaksford, M. & Chater, N. (2010) Conditionals and constraint satisfaction: Reconciling mental models and the probabilistic approach? In: Cognition and conditionals: Probability and logic in human thinking, ed. Oaksford, M. & Chater, N., pp. 309–34. Oxford University Press.
Pearl, J. (1988) Probabilistic reasoning in intelligent systems: Networks of plausible inference. Morgan Kaufmann.
Perfors, A., Tenenbaum, J. B. & Regier, T. (2011) The learnability of abstract syntactic principles. Cognition 118:306–38.
Perfors, A., Tenenbaum, J. & Wonnacott, E. (2010) Variability, negative evidence, and the acquisition of verb argument constructions. Journal of Child Language 37:607–42.
Rehder, B. & Burnett, R. (2005) Feature inference and the causal structure of categories. Cognitive Psychology 50:264314.
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical conditioning II: Current theory and research, ed. Black, A. H. & Prokasy, W. F., pp. 6499. Appleton-Century-Crofts.
Russell, S. & Norvig, P. (2011) Artificial intelligence: A modern approach, 3rd edition. Prentice-Hall.
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. (2010a) Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review 117:1144–67.
Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. (2010) Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin and Review 17:443–64.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. (2011) How to grow a mind: Statistics, structure, and abstraction. Science 331(6022):1279–85.
Vul, E., Goodman, N. D., Griffiths, T. L. & Tenenbaum, J. B. (2009a) One and done: Optimal decisions from very few samples. In: Proceedings of the 31st Annual Meeting of the Cognitive Science Society, ed. Taatgen, N. & van Rijn, H., pp. 148–53. Erlbaum.
Vul, E., Hanus, D. & Kanwisher, N. (2009b) Attention as inference: Selection is probabilistic, responses are all-or-none samples. Journal of Experimental Psychology: General 138:546–60.
Walsh, C. R. & Sloman, S. A. (2008) Updating beliefs with causal models: Violations of screening off. In: Memory and Mind: A festschrift for Gordon H. Bower, ed. Gluck, M. A., Anderson, J. R. & Kosslyn, S. M., pp. 345–57. Erlbaum.
Yuille, A. & Kersten, D. (2006) Vision as Bayesian inference: Analysis by synthesis? Trends in Cognitive Sciences 10:301308.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed