Skip to main content
    • Aa
    • Aa

The impending demise of the item in visual search

  • Johan Hulleman (a1) and Christian N. L. Olivers (a2)

The way the cognitive system scans the visual environment for relevant information – visual search in short – has been a long-standing central topic in vision science. From its inception as a research topic, and despite a number of promising alternative perspectives, the study of visual search has been governed by the assumption that a search proceeds on the basis of individual items (whether processed in parallel or not). This has led to the additional assumptions that shallow search slopes (at most a few tens of milliseconds per item for target-present trials) are most informative about the underlying process, and that eye movements are an epiphenomenon that can be safely ignored. We argue that the evidence now overwhelmingly favours an approach that takes fixations, not individual items, as its central unit. Within fixations, items are processed in parallel, and the functional field of view determines how many fixations are needed. In this type of theoretical framework, there is a direct connection between target discrimination difficulty, fixations, and reaction time (RT) measures. It therefore promises a more fundamental understanding of visual search by offering a unified account of both eye movement and manual response behaviour across the entire range of observed search efficiency, and provides new directions for research. A high-level conceptual simulation with just one free and four fixed parameters shows the viability of this approach.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

W. F. Bacon & H. E. Egeth (1994) Overriding stimulus-driven attentional capture. Perception and Psychophysics 55:485–96. doi: 10.3758/BF03205306.

K. K. Ball , B. L. Beard , D. L. Roenker , R. L. Miller & D. S. Griggs (1988) Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America, A, Optics, Image, and Science 5:2210–19. doi: 10.1364/JOSAA.5.002210.

J. Beck (1972) Similarity grouping and peripheral discriminability under uncertainty. American Journal of Psychology 85:119. doi: 10.2307/1420955.

J. Beck & B. Ambler (1973) The effects of concentrated and distributed attention on peripheral acuity. Perception and Psychophysics 14:225–30. doi: 10.3758/BF03212381.

S. I. Becker (2010) The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General 139:247–65. doi: 10.1037/a0018808.

A. V. Belopolsky & J. Theeuwes (2010) No capture outside the attentional window. Vision Research 50:2543–50. doi: 10.1016/j.visres.2010.08.023.

A. Binello , S. Mannan & K. H. Ruddock (1995) The characteristics of eye movements during visual search with multi-element stimuli. Spatial Vision 9:343–62. doi: 10.1163/156856895X00043.

H. Bouma (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–78.

C. Bundesen , T. Habekost & S. Kyllingsbaek (2005) A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review 112:291328. doi: 10.1037/0033-295X.112.2.291.

M. Carrasco (2011) Visual attention: The past 25 years. Vision Research 51:1484–525. doi: 10.1016/j.visres.2011.04.012.

M. Carrasco , D. L. Evert , E. Chang & S. M. Katz (1995) The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception and Psychophysics 57:1241–61. doi: 10.3758/BF03208380.

L. K. H. Chan & W. G. Hayward (2013) Visual search. WIREs Cognitive Science 4:415–29. doi: 10.1002/wcs.1235.

M. M. Chun & J. M. Wolfe (1996) Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology 30:3978. doi: 10.1006/cogp.1996.0002.

N. Donnelly , K. R. Cave , M. Welland & T. Menneer (2006) Breast screening, chicken sexing and the search for oil: Challenges for visual cognition. Geological Society, London, Special Publications 254:4355. doi: 10.1144/GSL.SP.2006.254.01.04.

T. Drew , K. K. Evans , M. L. H. , F. L. Jacobson & J. M. Wolfe (2013a) Informatics in radiology: What can you see in a single glance and how might this guide visual search in medical images? Radiographics 33:263–74. doi: 10.1148/rg.331125023.

T. Drew , M. L. H. , A. Olwal , F. Jacobson , S. E. Seltzer & J. M. Wolfe (2013b) Scanners and drillers: Characterizing expert visual search through volumetric images. Journal of Vision 13(10):3. doi: 10.1167/13.10.3.

T. Drew , M. L. H. & J. M. Wolfe (2013c) The invisible gorilla strikes again: Sustained inattentional blindness in expert observers. Psychological Science 24:1848–53. doi: 10.1177/0956797613479386.

J. Duncan & G. W. Humphreys (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.

J. Duncan , R. Ward & K. Shapiro (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–15. doi: 10.1038/369313a0.

M. P. Eckstein (2011) Visual search: A retrospective. Journal of Vision 11(5):14. doi: 10.1167/11.5.14.

M. P. Eckstein , J. P. Thomas , J. Palmer & S. S. Shimozaki (2000) A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics 62:425–51. doi: 10.3758/BF03212096.

M. Eimer (2015) EPS Mid-Career Award 2014: The control of attention in visual search: Cognitive and neural mechanisms. Quarterly Journal of Experimental Psychology 68:2437–63. doi: 10.1080/17470218.2015.1065283.

F. L. Engel (1977) Visual conspicuity, visual search and fixation tendencies of the eye. Vision Research 17:95108. doi: 10.1016/0042-6989(77)90207-3.

K. K. Evans , R. L. Birdwell & J. M. Wolfe (2013a) If you don't find it often, you often don't find it: Why some cancers are missed in breast cancer screening. PLoS ONE 8 (5):e64366. doi: 10.1371/journal.pone.0064366.

J. M. Findlay (1997) Saccade target selection during visual search. Vision Research 37:617–31. doi: 10.1016/S0042-6989(96)00218-0.

J. M. Findlay & I. D. Gilchrist (1998) Eye guidance and visual search. In: Eye guidance in reading, driving and scene perception, ed. G. Underwood , pp. 295312. Elsevier.

W. S. Geisler & K. L. Chou (1995) Separation of low-level and high-level factors in complex tasks: Visual search. Psychological Review 102:356–78. doi: 10.1037/0033-295X.102.2.356.

I. D. Gilchrist & M. Harvey (2000) Refixation frequency and memory mechanisms in visual search. Current Biology 10:1209–12. doi: 10.1016/S0960-9822(00)00729-6.

H. J. Godwin , T. Menneer , K. R. Cave & N. Donnelly (2010) Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition 18:1439–63. doi: 10.1080/13506285.2010.500605.

M. R. Greene & A. Oliva (2009) The briefest of glances: The time course of natural scene understanding. Psychological Science 20:464–72. doi: 10.1111/j.1467-9280.2009.02316.x.

R. N. Haber (1983) The impending demise of the icon: The role of iconic processes in information processing theories of perception. Behavioral and Brain Sciences 6:111.

S. He , P. Cavanagh & J. Intriligator (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–37. doi: 10.1038/383334a0.

J. M. Henderson & A. Hollingworth (1999) The role of fixation position in detecting scene changes across saccades. Psychological Science 10:438–43. doi: 10.1111/1467-9280.00183.

I. T. C. Hooge & C. J. Erkelens (1996) Control of fixation duration in a simple search task. Perception and Psychophysics 58:969–76. doi: 10.3758/BF03206825.

T. S. Horowitz & J. M. Wolfe (1998) Visual search has no memory. Nature 394:575–77. doi: 10.1038/29068.

J. Hulleman (2009) No need for inhibitory tagging of locations in visual search. Psychonomic Bulletin and Review 16:116–20. doi: 10.3758/PBR.16.1.116.

J. Hulleman (2010) Inhibitory tagging in visual search: Only in difficult search are items tagged individually. Vision Research 50:2069–79. doi: 10.1016/j.visres.2010.07.017.

J. Hulleman & C. N. L. Olivers (2014) Search through complex motion displays does not break down under spatial memory load. Psychonomic Bulletin and Review 21:652–58. doi: 10.3758/s13423-013-0537-6.

J. Hulleman , W. Te Winkel & F. Boselie (2000) Concavities as basic features in visual search: Evidence from search asymmetries. Perception and Psychophysics 62:162–74. doi: 10.3758/BF03212069.

G. W. Humphreys & H. J. Müller (1993) SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology 25:43110. doi: 10.1006/cogp.1993.1002.

J. Intriligator & P. Cavanagh (2001) The spatial resolution of visual attention. Cognitive Psychology 43:171216. doi: 10.1006/cogp.2001.0755.

L. Itti & C. Koch (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40:1489–506. doi: 10.1016/S0042-6989(99)00163-7.

A. M. Jacobs (1986) Eye-movement control in visual search: How direct is visual span control. Perception and Psychophysics 39:4758. doi: 10.3758/BF03207583.

J. Jonides & H. Gleitman (1972) A conceptual category effect of visual search: O as letter or as digit. Perception and Psychophysics 12:457–60. doi: 10.3758/BF03210934.

R. M. Klein (1988) Inhibitory tagging system facilitates visual search. Nature 334:430–31. doi: 10.1038/334430a0.

R. M. Klein & M. Farrell (1989) Search performance without eye-movements. Perception and Psychophysics 46:476–82. doi: 10.3758/BF03210863.

M. Kusunoki & M. E. Goldberg (2003) The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. Journal of Neurophysiology 89:1519–27. doi: 10.1152/jn.00519.2002.

D. M. Levi (2008) Crowding: An essential bottleneck for object recognition: A mini-review. Vision Research 48:635–54. doi: 10.1016/j.visres.2007.12.009.

H. Li , Y. Bao , E. Pöppel & Y. H. Su (2014) A unique visual rhythm does not pop out. Cognitive Processes 15:9397. doi: 10.1007/s10339-013-0581-1.

N. H. Mackworth (1948) The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology 1:621. doi: 10.1080/17470214808416738.

D. Marr (1982) Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.

J. S. McCarley , R. X. F. Wang , A. F. Kramer , D. E. Irwin & M. S. Peterson (2003) How much memory does oculomotor search have? Psychological Science 14:422–26. doi: 10.1111/1467-9280.01457.

P. McLeod , J. Driver & J. Crisp (1988) Visual search for a conjunction of motion and form is parallel. Nature 332:154–55. doi: 10.1038/332154a0.

T. Menneer , D. J. Barrett , L. Phillips , N. Donnelly & K. R. Cave (2007) Costs in searching for two targets: Dividing search across target types could improve airport security screening. Applied Cognitive Psychology 21:915–32. doi: 10.1002/acp.1305.

R. Moran , M. Zehetleitner , H. J. Müller & M. Usher (2013) Competitive guided search: Meeting the challenge of benchmark RT-distributions. Journal of Vision 13(8):24. doi: 10.1167/13.8.24.

B. C. Motter & E. J. Belky (1998a) The guidance of eye movements during active visual search. Vision Research 38:1805–15. doi: 10.1016/S0042-6989(97)00349-0.

B. C. Motter & E. J. Belky (1998b) The zone of focal attention during active visual search. Vision Research 38:1007–22. doi: 10.1016/S0042-6989(97)00252-6.

J. Najemnik & W. S. Geisler (2008) Eye movement statistics in humans are consistent with an optimal search strategy. Journal of Vision 8(3):4. doi: 10.1167/8.3.4.

K. Nakayama & P. Martini (2011) Situating visual search. Vision Research 51:1526–37. doi: 10.1016/j.visres.2010.09.003.

K. Nakayama & G. H. Silverman (1986) Serial and parallel processing of visual feature conjunctions. Nature 320:264–65. doi: 10.1038/320264a0.

M. B. Neider & G. J. Zelinsky (2008) Exploring set size effects in scenes: Identifying the objects of search. Visual Cognition 16(1):110.

U. Neisser (1964) Visual search. Scientific American 210:94102. doi: 10.1038/scientificamerican0664-94.

P. Neri & D. M. Levi (2006) Spatial resolution for feature binding is impaired in peripheral and amblyopic vision. Journal of Neurophysiology 96(1):142–53. doi: 10.1152/jn.01261.2005.

J. K. O'Regan , A. Lévy-Schoen & A. M. Jacobs (1983) The effect of visibility on eye-movement parameters in reading. Perception and Psychophysics 34:457–64. doi: 10.3758/BF03203061.

C. N. L. Olivers & M. Meeter (2006) On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition 13(1):128.

C. N. L. Olivers & P. A. Van der Helm (1998) Symmetry and selective attention: A dissociation between effortless perception and visual search. Perception and Psychophysics 60:1101–16. doi: 10.3758/BF03206161.

E. A. B. Over , I. T. C. Hooge , B. N. S. Vlaskamp & C. J. Erkelens (2007) Coarse-to-fine eye movement strategy in visual search. Vision Research 47:2272–80. doi: 10.1016/j. visres.2007.05.002.

J. Palmer , P. Verghese & M. Pavel (2000) The psychophysics of visual search. Vision Research 40:1227–68. doi: 10.1016/S0042-6989(99)00244-8.

H. Pashler (1987) Detecting conjunctions of color and form: Reassessing the serial search hypothesis. Perception and Psychophysics 41:191201. doi: 10.3758/BF03208218.

D. G. Pelli , M. Palomares & N. J. Majaj (2004) Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision 4(12):12. doi: 10.1167/4.12.12.

E. Põder (2008) Crowding with detection and coarse discrimination of simple visual features. Journal of Vision 8(4):24. doi: 10.1167/8.4.24.

E. Põder & J. Wagemans (2007) Crowding with conjunctions of simple features. Journal of Vision 7(2):23. doi: 10.1167/7.2.23.

M. Pomplun (2007) Advancing area activation towards a general model of eye movements in visual search. In: Integrated models of cognitive systems, ed. W. D. Gray , pp. 120–31. Oxford University Press.

M. Pomplun , E. M. Reingold & J. Y. Shen (2003) Area activation: A computational model of saccadic selectivity in visual search. Cognitive Science 27:299312. doi: 10.1016/S0364-0213(03)00003-X.

Z. W. Pylyshyn & R. W. Storm (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. doi: 10.1163/156856888X00122.

R. Rao , G. Zelinsky , M. Hayhoe & D. Ballard (2002) Eye movements in iconic visual search. Vision Research 42:1447–63. doi: 10.1016/S0042-6989(02)00040-8.

R. Rosenholtz , J. Huang & K. A. Ehinger (2012a) Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision. Frontiers in Psychology 3(13):115. doi: 10.3389/fpsyg.2012.00013.

A. F. Sanders (1970) Some aspects of the selective process in the functional visual field. Ergonomics 13:101–17. doi: 10.1080/00140137008931124.

C. T. Scialfa & K. M. Joffe (1998) Response times and eye movements in feature and conjunction search as a function of target eccentricity. Perception and Psychophysics 60:1067–82. doi: 10.3758/BF03211940.

E. E. Smith & H. Egeth (1966) Effects of association value on perceptual search. Journal of Experimental Psychology 71:687–90. doi: 10.1037/h0023090.

J. Theeuwes , R. Godijn & J. Pratt (2004) A new estimate of attentional dwell time. Psychonomic Bulletin and Review 11:6064. doi: 10.3758/BF03206461.

S. Thorpe , D. Fize & C. Marlot (1996) Speed of processing in the visual system. Nature 381:520–22. doi: 10.1038/381520a0.

T. Töllner , D. Rangelov & H. J. Müller (2012b) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990–99. doi: 10.1073/pnas.1206382109.

A. Treisman (2006) How the deployment of attention determines what we see. Visual Cognition 14:411–43. doi: 10.1080/13506280500195250.

A. Treisman & H. Schmidt (1982) Illusory conjunctions in the perception of objects. Cognitive Psychology 14:107–41. doi: 10.1016/0010-0285(82)90006-8.

A. M. Treisman & G. Gelade (1980) A feature-integration theory of attention. Cognitive Psychology 12:97136. doi: 10.1016/0010-0285(80)90005-5.

P. Verghese (2001) Visual search and attention: A signal detection approach. Neuron 31:523–35. doi: 10.1016/S0896-6273(01)00392-0.

F. C. Volkman , L. A. Riggs , K. D. White & R. K. Moore (1978) Contrast sensitivity during saccadic eye movements. Vision Research 18:1193–99. doi: 10.1016/0042-6989(78)90104-9.

D. G. Watson & G. W. Humphreys (2000) Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception and Psychophysics 62:471–81. doi: 10.3758/BF03212099.

G. Westheimer (1982) The spatial grain of the perifoveal visual field. Vision Research 22:157–62. doi: 10.1016/0042-6989(82)90177-8.

J. M. Wolfe (1992) “Effortless” texture segmentation and “parallel” visual search are not the same thing. Vision Research 32:757–63. doi: 10.1016/0042-6989(92)90190-T.

J. M. Wolfe (1994) Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review 1(2):202–38.

J. M. Wolfe (1998b) What can 1 million trials tell us about visual search? Psychological Science 9:3339. doi: 10.1111/1467-9280.00006.

J. M. Wolfe (2003) Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Sciences 7:7076. doi: 10.1016/S1364-6613(02)00024-4.

J. M. Wolfe (2007) Guided Search 4.0: Current Progress with a model of visual search. In: Integrated models of cognitive systems, ed. W. Gray , pp. 99119. Oxford University Press.

J. M. Wolfe , G. A. Alvarez , R. E. Rosenholtz , Y. I. Kuzmova & A. M. Sherman (2011a) Visual search for arbitrary objects in real scenes. Attention, Perception, and Psychophysics 73:1650–71. doi: 10.3758/s13414-011-0153-3.

J. M. Wolfe , D. N. Brunelli , J. Rubinstein & T. S. Horowitz (2013) Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets, too. Journal of Vision 13(3):33. doi: 10.1167/13.3.33.

J. M. Wolfe & T. S. Horowitz (2004) What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5:495501. doi: 10.1038/nrn1411.

J. M. Wolfe , T. S. Horowitz & N. M. Kenner (2005) Rare items often missed in visual searches. Nature 435(7041):439–40. doi: 10.1038/435439a.

J. M. Wolfe , T. S. Horowitz & E. M. Palmer (2010a) RT-distributions constrain models of visual search. Vision Research 50:1304–11. doi: 10.1016/j.visres.2009.11.002.

J. M. Wolfe , P. O'Neill & S. C. Bennett (1998) Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception and Psychophysics 60:140–56. doi: 10.3758/BF03211924.

J. M. Wolfe , M. L. H. , K. K. Evans & M. R. Greene (2011b) Visual search in scenes involves selective and non-selective pathways. Trends in Cognitive Sciences 15:7784. 10.1016/j.tics.2010.12.001.

G. J. Zelinsky (1996) Using eye saccades to assess the selectivity of search movements. Vision Research 36:2177–21.

G. J. Zelinsky (2008) A theory of eye movements during target acquisition. Psychological Review 115:787835. doi: 10.1037/a0013118.

G. J. Zelinsky (2012) TAM: Explaining off-object fixations and central fixation tendencies as effects of population averaging during search. Visual Cognition 20:515–45. doi: 10.1080/13506285.2012.666577.

G. J. Zelinsky , H. Adeli , Y. Peng & D. Samaras (2013) Modelling eye movements in a categorical search task. Philosophical Transactions of the Royal Society of London B: Biological Sciences 368(1628):20130058.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Behavioral and Brain Sciences
  • ISSN: 0140-525X
  • EISSN: 1469-1825
  • URL: /core/journals/behavioral-and-brain-sciences
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 223 *
Loading metrics...

Abstract views

Total abstract views: 1282 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2017. This data will be updated every 24 hours.