Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T23:30:10.624Z Has data issue: false hasContentIssue false

Task implementation and top-down control in continuous search

Published online by Cambridge University Press:  24 May 2017

Wolfgang Prinz*
Affiliation:
Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany. prinz@cbs.mpg.dehttps://www.cbs.mpg.de/staff/prinz-10359

Abstract

Evidence from continuous search suggests that targets are detected by default, whereas distractors are processed in considerable depth. These observations shed light on task implementation and top-down control. Task implementation builds on forming dynamic distractor models, based on continuous integration of distractor-related information. Top-down control builds on using these models for testing upcoming stimulus information.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Neisser, U. (1963) Decision-time without reaction time: Experiments in visual scanning. American Journal of Psychology 76:376–85.CrossRefGoogle Scholar
Neisser, U. (1966) Cognitive psychology. Appleton-Century-Crofts.Google Scholar
Prinz, W. (1977) Memory control of visual search. In: Attention and performance VI, ed. Dornič, S., pp. 441–62. Erlbaum.Google Scholar
Prinz, W. (1979) Integration of information in visual search. Quarterly Journal of Experimental Psychology 31:287304.Google Scholar
Prinz, W. (1983) Asymmetrical control areas in continuous visual search. In: Eye movements and psychological functions: International views, ed. Groner, R., Menz, C., Fisher, D. F. & Monty, R. A., pp. 85110. Erlbaum.Google Scholar
Prinz, W. (1986) Continuous selection. Psychological Research 48:231–38.Google Scholar
Prinz, W. & Ataian, D. (1973) Two components and two stages in search performance: A case study in visual search. Acta Psychologica 37:255–77.CrossRefGoogle ScholarPubMed
Prinz, W. & Kehrer, L. (1982) Recording detection distances in continuous visual search. In: Cognition and eye movements, ed. Groner, R. & Fraisse, P., pp. 4856. North-Holland.Google Scholar
Prinz, W., Hartlich, S. & Lahmeyer, W. (1972) Nicht-visueller Transfer in einer visuellen Suchaufgabe. Psychologische Forschung 35:218–42.Google Scholar
Prinz, W., Tweer, R. & Feige, R. (1974) Context control of search behavior: Evidence from a “hurdling”-technique. Acta Psychologica 38:7380.Google Scholar
Schneider, W. X. (2013) Selective visual processing across competition episodes: A theory of task-driven visual attention and working memory. Philosophical Transactions of the Royal Society B 368(1628):20130060. doi: 10.1098/rstb.2013.0060.Google Scholar
Schneider, W. X., Einhäuser, W. & Horstmann, G. (2013) Attentional selection in visual perception, memory and action: A quest for cross-domain integration. Philosophical Transactions of the Royal Society B 368(1628):20130053. doi: 10.1098/rstb.2013.0053.Google Scholar
Selfridge, O. (1959) Pandemonium: A paradigm for learning. In: Symposium on the Mechanization of Thought Processes, National Physical Laboratory, United Kingdom, November 1958, pp. 513–31. HM Stationery Office.Google Scholar