Hostname: page-component-7f64f4797f-kjzhn Total loading time: 0 Render date: 2025-11-05T16:41:44.567Z Has data issue: false hasContentIssue false

Tracing life-mind continuity in pivotal traits – world models and isomorphism

Published online by Cambridge University Press:  03 November 2025

Jannis Friedrich*
Affiliation:
Institute of Psychology, German Sport University Cologne, Cologne, North-Rhine Westphalia, Germany j.friedrich@dshs-koeln.de https://fis.dshs-koeln.de/en/persons/jannis-friedrich
Martin H. Fischer
Affiliation:
Potsdam Embodied Cognition Group, University of Potsdam, Potsdam, Brandenburg, Germany martinf@uni-potsdam.de https://www.uni-potsdam.de/en/pecog/members/prof-martin-fischer-phd
*
*Corresponding author.

Abstract

This target article provides a valuable biological basis for life-mind continuity approaches. These explain cognition in the context of the origin and evolution of life itself. We argue that the features which are critical to sophisticated human cognition in late phylogenetic development are already present in the traits highlighted in the target article as pivotal for the development of cognitive complexity.

Information

Type
Open Peer Commentary
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bellmund, J. L. S., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415), eaat6766. https://doi.org/10.1126/science.aat6766 CrossRefGoogle ScholarPubMed
Bruineberg, J., Kiverstein, J., & Rietveld, E. (2018). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 195(6), 24172444. https://doi.org/10.1007/s11229-016-1239-1 CrossRefGoogle Scholar
Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.Google Scholar
Conant, R. C., & Ashby, R. W. (1970). Every good regulator of a system must be a model of that system †. International Journal of Systems Science, 1(2), 8997. https://doi.org/10.1080/00207727008920220 CrossRefGoogle Scholar
Friedrich, J., & Fischer, M. (2025). Higher-level cognition under predictive processing: Structural representations, grounded cognition, and conceptual spaces. Minds & Machines (under review). https://doi.org/10.31219/osf.io/v436w Google Scholar
Friedrich, J., Fischer, M., & Raab, M. (2025). Issues in grounded cognition and how to solve them – The Minimalist Account. Journal of Cognition, 8(1), 31. https://doi.org/10.5334/joc.444 CrossRefGoogle ScholarPubMed
Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 193(2), 559582. https://doi.org/10.1007/s11229-015-0762-9 CrossRefGoogle Scholar
Goddu, M. K., & Gopnik, A. (2024). The development of human causal learning and reasoning. Nature Reviews Psychology, 3(5), 319339. https://doi.org/10.1038/s44159-024-00300-5 CrossRefGoogle Scholar
Godfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge University Press.CrossRefGoogle Scholar
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377396. https://doi.org/10.1017/S0140525X04000093 CrossRefGoogle ScholarPubMed
Kirchhoff, M. D., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of The Royal Society Interface, 15(138), 20170792. https://doi.org/10.1098/rsif.2017.0792 CrossRefGoogle ScholarPubMed
Lyre, H. (2022). Neurophenomenal structuralism. A philosophical agenda for a structuralist neuroscience of consciousness. Neuroscience of Consciousness, 2022(1), niac012. https://doi.org/10.1093/nc/niac012 CrossRefGoogle ScholarPubMed
Parr, T., & Friston, K. J. (2019). Generalised free energy and active inference. Biological Cybernetics, 113(5–6), 495513. https://doi.org/10.1007/s00422-019-00805-w CrossRefGoogle ScholarPubMed
Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8(2), 115131. https://doi.org/10.1007/s10339-007-0164-0 CrossRefGoogle ScholarPubMed
Pezzulo, G., & Castelfranchi, C. (2009). Thinking as the control of imagination: A conceptual framework for goal-directed systems. Psychological Research PRPF, 73(4), 559577. https://doi.org/10.1007/s00426-009-0237-z CrossRefGoogle Scholar
Ramstead, M. J., Kirchhoff, M. D., & Friston, K. J. (2020). A tale of two densities: Active inference is enactive inference. Adaptive Behavior, 28(4), 225239.CrossRefGoogle ScholarPubMed
Rovelli, C. (2018). Meaning and intentionality = information + evolution. In Aguirre, A., Foster, B. , & Merali, Z. (Eds.), Wandering towards a goal: How can mindless mathematical laws give rise to aims and intention? (pp. 1727). Springer International Publishing. https://doi.org/10.1007/978-3-319-75726-1_3 CrossRefGoogle Scholar
Shepard, R. N. (1981). Psychophysical complementarity. In Perceptual Organization (1st ed.). Routledge.Google Scholar
Thompson, E. (2010). Mind in life: Biology, phenomenology, and the sciences of mind (First Harvard University Press paperback edition). The Belknap Press of Harvard University Press.Google Scholar
Williams, D. (2018). Predictive minds and small-scale models: Kenneth Craik’s contribution to cognitive science. Philosophical Explorations, 21(2), 245263. https://doi.org/10.1080/13869795.2018.1477982 CrossRefGoogle Scholar