Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T12:19:15.614Z Has data issue: false hasContentIssue false

Association between lifestyle patterns and overweight and obesity in adolescents: a systematic review

Published online by Cambridge University Press:  28 January 2022

Luciana Jeremias Pereira
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
Patrícia de Fragas Hinnig
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
Luísa Harumi Matsuo
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
Patrícia Faria Di Pietro
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
Maria Alice Altenburg de Assis
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
Francilene Gracieli Kunradi Vieira*
Affiliation:
Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Reitor João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil
*
*Corresponding author: Dr F. G. K. Vieira, email francilene.vieira@ufsc.br

Abstract

The purpose of this systematic review was to summarise the evidence from observational studies regarding the association between lifestyle patterns and overweight and obesity in adolescents. To our knowledge, no review study has analysed this association in this age group. A systematic search was conducted in Latin American and Caribbean Health Sciences Literature (LILACS), Scopus, PubMed Central and Web of Science databases, with no language or time restrictions. Studies that included adolescents (10–19 years old) were selected using data-driven methods that combined the diet domain with at least one of the following behavioural domains: physical activity, sedentary behaviour and sleep. Twenty-one articles met all eligibility criteria. Of these, twelve studies were used for synthesising the results. Studies differed in many aspects, such as sample size, behavioural assessment tools, and lifestyle pattern and weight status indicators. Overall, cross-sectional studies found no association between lifestyle patterns and overweight and obesity, even when the data were stratified by sex. However, when analysing the results stratified by risk of bias, a positive association between predominantly unhealthy and mixed lifestyle patterns with overweight/obesity was identified in cross-sectional studies with moderate risk of bias. A prospective study revealed an increase in BMI over time associated with mixed and predominantly unhealthy lifestyle patterns. Current findings regarding the association between lifestyle patterns and overweight and obesity in adolescents are inconsistent. More studies are needed to clarify possible associations.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Narciso, J, Silva, AJ, Rodrigues, V, etal. (2019) Behavioral, contextual and biological factors associated with obesity during adolescence: a systematic review. PLOS ONE 14, e0214941.CrossRefGoogle ScholarPubMed
Liberali, R, Kupek, E & Assis, MAAD (2020) Dietary patterns and childhood obesity risk: a systematic review. Child Obes 16, 7085.CrossRefGoogle ScholarPubMed
de Rezende, LFM, Rodrigues Lopes, M, Rey-López, JP, etal. (2014) Sedentary behavior and health outcomes: an overview of systematic reviews. PLOS ONE 9, e105620.CrossRefGoogle ScholarPubMed
Jiménez-Pavón, D, Kelly, J & Reilly, JJ (2010) Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes 5, 318.CrossRefGoogle ScholarPubMed
Fatima, Y, Doi, SAR & Mamun, AA (2016) Sleep quality and obesity in young subjects: a meta-analysis. Obes Rev 17, 11541166.CrossRefGoogle ScholarPubMed
Leech, RM, McNaughton, SA & Timperio, A (2014) The clustering of diet, physical activity and sedentary behavior in children and adolescents: a review. Int J Behav Nutr Phys Act 11, 4.CrossRefGoogle ScholarPubMed
Spring, B, Moller, AC & Coons, MJ (2012) Multiple health behaviours: overview and implications. J Public Health 34, i3i10.10.1093/pubmed/fdr111CrossRefGoogle ScholarPubMed
Carvalho, CAD, Fonsêca, PCDA, Nobre, LN, etal. (2016) Methods of a posteriori identification of food patterns in Brazilian children: a systematic review. Ciênc. Saúde Colet. 21, 143154.CrossRefGoogle ScholarPubMed
Alberga, AS, Sigal, RJ, Goldfield, G, etal. (2012) Overweight and obese teenagers: why is adolescence a critical period? Pediatr Obes 7, 261273.CrossRefGoogle ScholarPubMed
D’Souza, NJ, Kuswara, K, Zheng, M, etal. (2020) A systematic review of lifestyle patterns and their association with adiposity in children aged 5–12 years. Obes Rev 21, e13029.Google ScholarPubMed
Demory-Luce, D, Morales, M, Nicklas, T, etal. (2004) Changes in food group consumption patterns from childhood to young adulthood: the Bogalusa heart study. J Am Diet Assoc 104, 16841691.10.1016/j.jada.2004.07.026CrossRefGoogle ScholarPubMed
Simmonds, M, Llewellyn, A, Owen, CG, etal. (2016) Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev 17, 95107.10.1111/obr.12334CrossRefGoogle ScholarPubMed
Moher, D, Liberati, A, Tetzlaff, J, etal. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097.10.1371/journal.pmed.1000097CrossRefGoogle ScholarPubMed
World Health Organization (2021) Adolescence: A Period Needing Special Attention – Recognizing Adolescence. https://apps.who.int/adolescent/second-decade/section2/page1/recognizing-adolescence.html (accessed November 2021).Google Scholar
Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7, 284294.CrossRefGoogle ScholarPubMed
de Onis, M, Onyango, AW, Borghi, E, etal. (2007) Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 85, 660667.CrossRefGoogle ScholarPubMed
Kuczmarski, RJ, Ogden, CL, Guo, SS, etal. (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11, 1190.Google Scholar
Lefebvre, C, Glanville, J, Briscoe, S, etal. (2021) Chapter 4: Searching for and selecting studies. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 [Higgins, JPT, Thomas, J, Chandler, J etal., editors]. Cochrane. www.training.cochrane.org/handbook (accessed April 2020).Google Scholar
JBI Institute (2020) Critical Appraisal Tools. https://jbi.global/critical-appraisal-tools (accessed April 2020).Google Scholar
Hinnig, PDF, Monteiro, JS, De Assis, MAA, etal. (2018) Dietary patterns of children and adolescents from high, medium and low human development countries and associated socioeconomic factors: a systematic review. Nutrients 10, 436.CrossRefGoogle ScholarPubMed
Campbell, M, McKenzie, JE, Sowden, A, etal. (2020) Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368, l6890.CrossRefGoogle ScholarPubMed
Kontogianni, MD, Farmaki, AE, Vidra, N, etal. (2010) Associations between lifestyle patterns and body mass index in a sample of Greek children and adolescents. J Am Diet Assoc 110, 215221.CrossRefGoogle Scholar
Moschonis, G, Kalliora, AC, Costarelli, V, etal. (2014) Identification of lifestyle patterns associated with obesity and fat mass in children: the healthy growth study. Public Health Nutr 17, 614624.CrossRefGoogle ScholarPubMed
Ferrar, K & Golley, R (2015) Adolescent diet and time use clusters and associations with overweight and obesity and socioeconomic position. Health Educ Behav 42, 361369.CrossRefGoogle ScholarPubMed
Schmiege, SJ, Gance-Cleveland, B, Gilbert, L, etal. (2016) Identifying patterns of obesity risk behavior to improve pediatric primary care. J Spec Pediatr Nurs 21, 1828.CrossRefGoogle ScholarPubMed
Cabanas-Sánchez, V, Martínez-Gómez, D, Izquierdo-Gómez, R, etal. (2018) Association between clustering of lifestyle behaviors and health-related physical fitness in youth: the UP&DOWN study. J Pediatr 199, 41.e148.e1.CrossRefGoogle ScholarPubMed
Spengler, S, Mess, F, Schmocker, E, etal. (2014) Longitudinal associations of health-related behavior patterns in adolescence with change of weight status and self-rated health over a period of 6 years: results of the MoMo longitudinal study. BMC Pediatr 14, 242.CrossRefGoogle Scholar
Leech, RM, McNaughton, SA & Timperio, A (2015) Clustering of diet, physical activity and sedentary behaviour among Australian children: cross-sectional and longitudinal associations with overweight and obesity. Int J Obes 39, 10791085.10.1038/ijo.2015.66CrossRefGoogle ScholarPubMed
Werneck, AO, Agostinete, RR, Cayres, SU, etal. (2018) Association between cluster of lifestyle behaviors and HOMA-IR among adolescents: ABCD growth study. Medicina 54, 96.CrossRefGoogle ScholarPubMed
Maia, EG (2016) Patterns of risk and protective factors for excessive weight gain among Brazilian adolescents: A cluster analysis. PhD Thesis, Federal University of Minas Gerais. https://repositorio.ufmg.br/handle/1843/ANDO-A97KJ8 (accessed November 2021).Google Scholar
Maia, EG, Mendes, LL, Pimenta, AM, etal. (2018) Cluster of risk and protective factors for obesity among Brazilian adolescents. Int J Public Health 63, 481490.CrossRefGoogle ScholarPubMed
Sanchez-Oliva, D, Grao-Cruces, A, Carbonell-Baeza, A, etal. (2018) Lifestyle clusters in school-aged youth and longitudinal associations with fatness: the UP&DOWN study. J Pediatr 203, 317.e1324.e1.CrossRefGoogle ScholarPubMed
Tabacchi, G, Faigenbaum, A, Jemni, M, etal. (2018) Profiles of physical fitness risk behaviours in school adolescents from the ASSO project: a latent class analysis. Int J Environ Res Public Health 15, 1933.10.3390/ijerph15091933CrossRefGoogle Scholar
Cuenca-García, M, Huybrechts, I, Ruiz, JR, etal. (2013) Clustering of multiple lifestyle behaviors and health-related fitness in European adolescents. J Nutr Educ Behav 45, 549557.CrossRefGoogle ScholarPubMed
Sena, EDMS, Muraro, AP, Rodrigues, PRM, etal. (2017) Risk behavior patterns for chronic diseases and associated factors among adolescents. Nutr Hosp 34, 914922.Google ScholarPubMed
Fleary, SA (2017) Combined patterns of risk for problem and obesogenic behaviors in adolescents: a latent class analysis approach. J Sch Health 87, 182193.CrossRefGoogle ScholarPubMed
Höpker, T, Lampert, T & Spallek, J (2014) Identification and characterisation of health behaviours in 11- to 17-year-old adolescents: a cluster analysis based on the German health interview and examination survey for children and adolescents. Gesundheitswesen 76, 453461.Google ScholarPubMed
Busch, V, Van Stel, HF, Schrijvers, AJ, etal. (2013) Clustering of health-related behaviors, health outcomes and demographics in Dutch adolescents: a cross-sectional study. BMC Public Health 13, 1118.CrossRefGoogle ScholarPubMed
Turner, K, Dwyer, JJ, Edwards, AM, etal. (2011) Clustering of specific health-related behaviours among Toronto adolescents. Can J Diet Pract Res 72, e155e160.10.3148/72.3.2011.e155CrossRefGoogle ScholarPubMed
Zhang, J, Feng, XQ, Zhai, Y, etal. (2018) Clustering of unhealthy lifestyle behaviours and associations with perceived and actual weight status among primary school children in China: a nationally representative cross-sectional study. Prev Med 112, 614.10.1016/j.ypmed.2018.03.017CrossRefGoogle Scholar
Spengler, S, Mess, F & Woll, A (2017) Comparison of health-related behavior patterns of boys and girls in Germany: results of the MoMo study. Gesundheitswesen 79, 993999.Google ScholarPubMed
Mandic, S, Bengoechea, EG, Coppell, KJ, etal. (2017) Clustering of (un)healthy behaviors in adolescents from Dunedin, New Zealand. Am J Health Behav 41, 266275.10.5993/AJHB.41.3.6CrossRefGoogle ScholarPubMed
Boone, JE, Gordon-Larsen, P & Adair, LS (2007) High risk adolescent obesity behavior patterns: a comparison of clusters, factors, and an index measure. Faseb J 21, A115.CrossRefGoogle Scholar
Moreira, NF, da Veiga, GV, Santaliestra-Pasías, AM, etal. (2018) Clustering of multiple energy balance related behaviors is associated with body fat composition indicators in adolescents: results from the HELENA and ELANA studies. Appetite 120, 505513.CrossRefGoogle ScholarPubMed
Laxer, RE, Brownson, RC, Dubin, JA, etal. (2017) Clustering of risk-related modifiable behaviours and their association with overweight and obesity among a large sample of youth in the COMPASS study. BMC Public Health 17, 102.CrossRefGoogle ScholarPubMed
Laxer, RE, Cooke, M, Dubin, JA, etal. (2018) Behavioural patterns only predict concurrent BMI status and not BMI trajectories in a sample of youth in Ontario, Canada. PLOS ONE 13, e0190405.CrossRefGoogle ScholarPubMed
Boone-Heinonen, J, Gordon-Larsen, P & Adair, LS (2008) Obesogenic clusters: multidimensional adolescent obesity-related behaviors in the US. Ann Behav Med 36, 217–30.CrossRefGoogle Scholar
Landsberg, B, Plachta-Danielzik, S, Lange, D, etal. (2010) Clustering of lifestyle factors and association with overweight in adolescents of the Kiel obesity prevention study. Public Health Nutr 13, 17081715.CrossRefGoogle ScholarPubMed
Sabbe, D, De Bourdeaudhuij, I, Legiest, E, etal. (2008) A cluster-analytical approach towards physical activity and eating habits among 10-year-old children. Health Educ Res 23, 753762.CrossRefGoogle ScholarPubMed
van der Sluis, ME, Lien, N, Twisk, JW, etal. (2010) Longitudinal associations of energy balance-related behaviours and cross-sectional associations of clusters and body mass index in Norwegian adolescents. Public Health Nutr 13, 17161721.CrossRefGoogle ScholarPubMed
Seghers, J & Rutten, C (2010) Clustering of multiple lifestyle behaviours and its relationship with weight status and cardiorespiratory fitness in a sample of Flemish 11- to 12-year-olds. Public Health Nutr 13, 18381846.CrossRefGoogle Scholar
Ottevaere, C, Huybrechts, I, Benser, J, etal. (2011) Clustering patterns of physical activity, sedentary and dietary behavior among European adolescents: The HELENA study. BMC Public Health 11, 328.CrossRefGoogle ScholarPubMed
Iannotti, RJ & Wang, J (2013) Patterns of physical activity, sedentary behavior, and diet in U.S. adolescents. J Adolesc Health 53, 280286.CrossRefGoogle ScholarPubMed
Fernandez-Alvira, JM, De Bourdeaudhuij, I, Singh, AS, etal. (2013) Clustering of energy balance-related behaviors and parental education in European children: the ENERGY-project. Int J Behav Nutr Phys Act 10, 5.CrossRefGoogle ScholarPubMed
Perez-Rodrigo, C, Gil, A, Gonzalez-Gross, M, etal. (2015) Clustering of dietary patterns, lifestyles, and overweight among Spanish children and adolescents in the ANIBES study. Nutrients 8, 11.CrossRefGoogle ScholarPubMed
Nuutinen, T, Lehto, E, Ray, C, etal. (2017) Clustering of energy balance-related behaviours, sleep, and overweight among Finnish adolescents. Int J Public Health 62, 929938.CrossRefGoogle ScholarPubMed
Dantas, MD, dos Santos, MC, Lopes, LAF, etal. (2018) Clustering of excess body weight-related behaviors in a sample of Brazilian adolescents. Nutrients 10, 1505.CrossRefGoogle Scholar
Wadolowska, L, Hamulka, J, Kowalkowska, J, etal. (2018) Prudent-active and fast-food-sedentary dietary-lifestyle patterns: the association with adiposity, nutrition knowledge and sociodemographic factors in polish teenagers. The ABC of healthy eating project. Nutrients 10, 1988.CrossRefGoogle ScholarPubMed
Sevil-Serrano, J, Aibar-Solana, A, Abos, A, etal. (2019) Healthy or unhealthy? The cocktail of health-related behavior profiles in Spanish adolescents. Int J Environ Res Public Health 16, 3151.CrossRefGoogle ScholarPubMed
dos Santos, CS, Picoito, J, Loureiro, I, etal. (2020) Clustering of health-related behaviours and its relationship with individual and contextual factors in Portuguese adolescents: results from a cross-sectional study. BMC Pediatr 20, 247.CrossRefGoogle ScholarPubMed
Berlin, KS, Kamody, RC, Thurston, IB, etal. (2017) Physical activity, sedentary behaviors, and nutritional risk profiles and relations to body mass index, obesity, and overweight in eighth grade. Behav Med 43, 3139.CrossRefGoogle ScholarPubMed
Veloso, SM, Matos, MG, Carvalho, M, etal. (2012) Psychosocial factors of different health behaviour patterns in adolescents: association with overweight and weight control behaviours. J Obes 2012, 110.CrossRefGoogle ScholarPubMed
Marttila-Tornio, K, Ruotsalainen, H, Miettunen, J, etal. (2019) Clusters of health behaviours and their relation to body mass index among adolescents in Northern Finland. Scand J Caring Sci 34, 666674.CrossRefGoogle ScholarPubMed
Spengler, S, Mess, F, Mewes, N, etal. (2012) A cluster-analytic approach towards multidimensional health-related behaviors in adolescents: the MoMo-study. BMC Public Health 12, 1128.CrossRefGoogle ScholarPubMed
Costa, CS, Del-Ponte, B, Assunção, MCF, etal. (2018) Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review. Public Health Nutr 21, 148159.CrossRefGoogle ScholarPubMed
Carson, V, Hunter, S, Kuzik, N, etal. (2016) Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab 41, S240S265.10.1139/apnm-2015-0630CrossRefGoogle ScholarPubMed
Kuskowska-Wolk, A, Karlsson, P, Stolt, M, etal. (1989) The predictive validity of body mass index based on self-reported weight and height. Int J Obes 13, 441453.Google ScholarPubMed
Walker, JL, Ardouin, S & Burrows, T (2018) The validity of dietary assessment methods to accurately measure energy intake in children and adolescents who are overweight or obese: a systematic review. Eur J Clin Nutr 72, 185197.CrossRefGoogle ScholarPubMed
Brown, CL, Skelton, JA, Perrin, EM, etal. (2016) Behaviors and motivations for weight loss in children and adolescents. Obesity 24, 446452.CrossRefGoogle ScholarPubMed
Chung, A, Backholer, K, Wong, E, etal. (2016) Trends in child and adolescent obesity prevalence in economically advanced countries according to socioeconomic position: a systematic review. Obes Rev 17, 276295.CrossRefGoogle ScholarPubMed
Fatima, Y, Doi, SAR & Mamun, AA (2015) Longitudinal impact of sleep on overweight and obesity in children and adolescents: a systematic review and bias-adjusted meta-analysis. Obes Rev 16, 137149.CrossRefGoogle ScholarPubMed
Abarca-Gómez, L, Abdeen, ZA, Hamid, ZA, etal. (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 26272642.CrossRefGoogle Scholar
Magidson, J & Vermunt, J (2002) Latent class models for clustering: a comparison with K-means. Can J Mark Res 20, 3744.Google Scholar
Battista, K & Leatherdale, ST (2017) Estimating how extra calories from alcohol consumption are likely an overlooked contributor to youth obesity. Health Promot Chronic Dis Prev Can 37, 194200.CrossRefGoogle ScholarPubMed
D’Souza, NJ, Downing, K, Abbott, G, etal. (2021) A comparison of children’s diet and movement behaviour patterns derived from three unsupervised multivariate methods. PLOS ONE 16, e0255203.CrossRefGoogle ScholarPubMed
Pérez-Rodrigo, C, Artiach Escauriaza, B, Artiach Escauriaza, J, etal. (2015) Dietary assessment in children and adolescents: issues and recommendations. Nutr Hosp 31, Suppl. 3, 7683.Google ScholarPubMed
McKenzie, J & Brennan, S (2021) Chapter 12: Synthesizing and presenting findings using other methods. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 [Higgins, JPT, Thomas, J, Chandler, J etal., editors]. Cochrane. www.training.cochrane.org/handbook (accessed November 2021).Google Scholar
Supplementary material: File

Pereira et al. supplementary material

Tables S1-S9

Download Pereira et al. supplementary material(File)
File 78.1 KB