Skip to main content Accessibility help

Carbohydrate-rich breakfast attenuates glycaemic, insulinaemic and ghrelin response to ad libitum lunch relative to morning fasting in lean adults

  • Enhad A. Chowdhury (a1), Judith D. Richardson (a1), Kostas Tsintzas (a2), Dylan Thompson (a1) and James A. Betts (a1)...

Breakfast omission is associated with obesity and CVD/diabetes, but the acute effects of extended morning fasting upon subsequent energy intake and metabolic/hormonal responses have received less attention. In a randomised cross-over design, thirty-five lean men (n 14) and women (n 21) extended their overnight fast or ingested a typical carbohydrate-rich breakfast in quantities relative to RMR (i.e. 1963 (sd 238) kJ), before an ad libitum lunch 3 h later. Blood samples were obtained hourly throughout the day until 3 h post-lunch, with subjective appetite measures assessed. Lunch intake was greater following extended fasting (640 (sd 1042) kJ, P< 0·01) but incompletely compensated for the omitted breakfast, with total intake lower than the breakfast trial (3887 (sd 1326) v. 5213 (sd 1590) kJ, P< 0·001). Systemic concentrations of peptide tyrosine–tyrosine and leptin were greater during the afternoon following breakfast (both P< 0·05) but neither acylated/total ghrelin concentrations were suppressed by the ad libitum lunch in the breakfast trial, remaining greater than the morning fasting trial throughout the afternoon (all P< 0·05). Insulin concentrations were greater during the afternoon in the morning fasting trial (all P< 0·01). There were no differences between trials in subjective appetite during the afternoon. In conclusion, morning fasting caused incomplete energy compensation at an ad libitum lunch. Breakfast increased some anorectic hormones during the afternoon but paradoxically abolished ghrelin suppression by the second meal. Extending morning fasting until lunch altered subsequent metabolic and hormonal responses but without greater appetite during the afternoon. The present study clarifies the impact of acute breakfast omission and adds novel insights into second-meal metabolism.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Carbohydrate-rich breakfast attenuates glycaemic, insulinaemic and ghrelin response to ad libitum lunch relative to morning fasting in lean adults
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Carbohydrate-rich breakfast attenuates glycaemic, insulinaemic and ghrelin response to ad libitum lunch relative to morning fasting in lean adults
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Carbohydrate-rich breakfast attenuates glycaemic, insulinaemic and ghrelin response to ad libitum lunch relative to morning fasting in lean adults
      Available formats
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* Corresponding author: Dr J. A. Betts, fax +44 1225 383833, email
Hide All
1 Ma, Y, Bertone, ER, Stanek, EJ, et al. (2003) Association between eating patterns and obesity in a free-living US adult population. Am J Epidemiol 158, 8592.
2 Horikawa, C, Kodama, S, Yachi, Y, et al. (2011) Skipping breakfast and prevalence of overweight and obesity in Asian and Pacific regions: a meta-analysis. Prev Med 53, 260267.
3 Purslow, LR, Sandhu, MS, Forouhi, N, et al. (2008) Energy intake at breakfast and weight change: prospective study of 6,764 middle-aged men and women. Am J Epidemiol 167, 188192.
4 Mekary, RA, Giovannucci, E, Cahill, L, et al. (2013) Eating patterns and type 2 diabetes risk in older women: breakfast consumption and eating frequency. Am J Clin Nutr 98, 436443.
5 Mekary, RA, Giovannucci, E, Willett, WC, et al. (2012) Eating patterns and type 2 diabetes risk in men: breakfast omission, eating frequency, and snacking. Am J Clin Nutr 95, 11821189.
6 Cahill, LE, Chiuve, SE, Mekary, RA, et al. (2013) Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation 128, 337343.
7 Clegg, M & Shafat, A (2010) Energy and macronutrient composition of breakfast affect gastric emptying of lunch and subsequent food intake, satiety and satiation. Appetite 54, 517523.
8 Hamedani, A, Akhavan, T, Samra, RA, et al. (2009) Reduced energy intake at breakfast is not compensated for at lunch if a high-insoluble-fiber cereal replaces a low-fiber cereal. Am J Clin Nutr 89, 13431349.
9 Kim, H, Stote, KS, Behall, KM, et al. (2009) Glucose and insulin responses to whole grain breakfasts varying in soluble fiber, β-glucan: a dose response study in obese women with increased risk for insulin resistance. Eur J Nutr 48, 170175.
10 Levine, AS, Tallman, JR, Grace, MK, et al. (1989) Effect of breakfast cereals on short-term food intake. Am J Clin Nutr 50, 13031307.
11 Liljeberg, HG, Akerberg, AK & Bjorck, IM (1999) Effect of the glycemic index and content of indigestible carbohydrates of cereal-based breakfast meals on glucose tolerance at lunch in healthy subjects. Am J Clin Nutr 69, 647655.
12 Martin, A, Normand, S, Sothier, M, et al. (2000) Is advice for breakfast consumption justified? Results from a short-term dietary and metabolic experiment in young healthy men. Br J Nutr 84, 337344.
13 Rosen, LA, Ostman, EM & Bjorck, IM (2011) Effects of cereal breakfasts on postprandial glucose, appetite regulation and voluntary energy intake at a subsequent standardized lunch; focusing on rye products. Nutr J 10, 7.
14 Nilsson, AC, Ostman, EM, Granfeldt, Y, et al. (2008) Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr 87, 645654.
15 Gonzalez, JT, Veasey, RC, Rumbold, PL, et al. (2013) Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr 110, 721732.
16 Levitsky, DA & Pacanowski, CR (2013) Effect of skipping breakfast on subsequent energy intake. Physiol Behav 119, 916.
17 Astbury, NM, Taylor, MA & Macdonald, IA (2011) Breakfast consumption affects appetite, energy intake, and the metabolic and endocrine responses to foods consumed later in the day in male habitual breakfast eaters. J Nutr 141, 13811389.
18 Cummings, DE, Purnell, JQ, Frayo, RS, et al. (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 17141719.
19 Leidy, HJ, Ortinau, LC, Douglas, SM, et al. (2013) Beneficial effects of a higher-protein breakfast on the appetitive, hormonal, and neural signals controlling energy intake regulation in overweight/obese, “breakfast-skipping,” late-adolescent girls. Am J Clin Nutr 97, 677688.
20 Batterham, RL, Cowley, MA, Small, CJ, et al. (2002) Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650654.
21 Leidy, HJ & Racki, EM (2010) The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents. Int J Obes (Lond) 34, 11251133.
22 Holst, JJ (2013) Incretin hormones and the satiation signal. Int J Obes (Lond) 37, 11611168.
23 Kant, AK & Graubard, BI (2014) 40-Year trends in meal and snack eating behaviors of American adults. J Acad Nutr Diet 115, 5063.
24 Reeves, S, Halsey, LG, McMeel, Y, et al. (2013) Breakfast habits, beliefs and measures of health and wellbeing in a nationally representative UK sample. Appetite 60, 5157.
25 Betts, JA, Richardson, JD, Chowdhury, EA, et al. (2014) The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults. Am J Clin Nutr 100, 539547.
26 Betts, JA, Thompson, D, Richardson, JD, et al. (2011) Bath Breakfast Project (BBP) – examining the role of extended daily fasting in human energy balance and associated health outcomes: study protocol for a randomised controlled trial [ISRCTN31521726]. Trials 12, 172.
27 Kelly, TL, Wilson, KE & Heymsfield, SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE 4, e7038.
28 Buffenstein, R, Poppitt, SD, McDevitt, RM, et al. (1995) Food intake and the menstrual cycle: a retrospective analysis, with implications for appetite research. Physiol Behav 58, 10671077.
29 Lissner, L, Stevens, J, Levitsky, DA, et al. (1988) Variation in energy intake during the menstrual cycle: implications for food-intake research. Am J Clin Nutr 48, 956962.
30 Chryssanthopoulos, C, Williams, C, Nowitz, A, et al. (2004) Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci 22, 10651071.
31 Timlin, MT & Pereira, MA (2007) Breakfast frequency and quality in the etiology of adult obesity and chronic diseases. Nutr Rev 65, 268281.
32 Blundell, JE, Caudwell, P, Gibbons, C, et al. (2012) Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Model Mech 5, 608613.
33 Kokkinos, A, le Roux, CW, Alexiadou, K, et al. (2010) Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab 95, 333337.
34 Betts, JA & Thompson, D (2012) Thinking outside the bag (not necessarily outside the lab). Med Sci Sports Exerc 44, 2040; author reply 2041.
35 Compher, C, Frankenfield, D, Keim, N, et al. (2006) Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc 106, 881903.
36 Weir, JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
37 Jequier, E, Acheson, K & Schutz, Y (1987) Assessment of energy expenditure and fuel utilization in man. Ann Rev Nutr 7, 187208.
38 Chandarana, K, Drew, ME, Emmanuel, J, et al. (2009) Subject standardization, acclimatization, and sample processing affect gut hormone levels and appetite in humans. Gastroenterology 136, 21152126.
39 Anderson, GH, Catherine, NL, Woodend, DM, et al. (2002) Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Am J Clin Nutr 76, 10231030.
40 Atkinson, G (2002) Analysis of repeated measurements in physical therapy research: multiple comparisons amongst level means and multi-factorial designs. Phys Ther Sport 3, 191203.
41 Ludbrook, J (1998) Multiple comparison procedures updated. Clin Exp Pharmacol Physiol 25, 10321037.
42 Loftus, GR & Masson, ME (1994) Using confidence intervals in within-subject designs. Psychon Bull Rev 1, 476490.
43 Adrian, TE, Ferri, GL, Bacarese-Hamilton, AJ, et al. (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 10701077.
44 Saad, MF, Riad-Gabriel, MG, Khan, A, et al. (1998) Diurnal and ultradian rhythmicity of plasma leptin: effects of gender and adiposity. J Clin Endocrinol Metab 83, 453459.
45 Schoeller, DA, Cella, LK, Sinha, MK, et al. (1997) Entrainment of the diurnal rhythm of plasma leptin to meal timing. J Clin Invest 100, 18821887.
46 Blom, WA, Stafleu, A, de Graaf, C, et al. (2005) Ghrelin response to carbohydrate-enriched breakfast is related to insulin. Am J Clin Nutr 81, 367375.
47 Foster-Schubert, KE, Overduin, J, Prudom, CE, et al. (2008) Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J Clin Endocrinol Metab 93, 19711979.
48 Flanagan, DE, Evans, ML, Monsod, TP, et al. (2003) The influence of insulin on circulating ghrelin. Am J Physiol Endocrinol Metab 284, E313E316.
49 Murdolo, G, Lucidi, P, et al. (2003) Di Loreto C. Insulin is required for prandial ghrelin suppression in humans. Diabetes 52, 29232927.
50 Saad, MF, Bernaba, B, Hwu, CM, et al. (2002) Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 87, 39974000.
51 Caixas, A, Bashore, C, Nash, W, et al. (2002) Insulin, unlike food intake, does not suppress ghrelin in human subjects. J Clin Endocrinol Metab 87, 1902.
52 Schaller, G, Schmidt, A, Pleiner, J, et al. (2003) Plasma ghrelin concentrations are not regulated by glucose or insulin: a double-blind, placebo-controlled crossover clamp study. Diabetes 52, 1620.
53 Blom, WA, de Graaf, C, Lluch, A, et al. (2009) Postprandial ghrelin responses are associated with the intermeal interval in time-blinded normal weight men, but not in obese men. Physiol Behav 96, 742748.
54 Hamman, L & Hirschmann, I (1919) Studies on blood sugar. IV. Effects upon the blood sugar of the repeated ingestion of glucose. Johns Hopkins Hosp Bull 30, 306307.
55 Bonuccelli, S, Muscelli, E, Gastaldelli, A, et al. (2009) Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms. Am J Physiol Endocrinol Metab 297, E532E537.
56 Reeves, S, Huber, JW, Halsey, LG, et al. (2014) Experimental manipulation of breakfast in normal and overweight/obese participants is associated with changes to nutrient and energy intake consumption patterns. Physiol Behav 133C 130135.
57 Robertson, MD, Henderson, RA, Vist, GE, et al. (2002) Extended effects of evening meal carbohydrate-to-fat ratio on fasting and postprandial substrate metabolism. Am J Clin Nutr 75, 505510.
58 Hochstenbach-Waelen, A, Veldhorst, MA, Nieuwenhuizen, AG, et al. (2009) Comparison of 2 diets with either 25 % or 10 % of energy as casein on energy expenditure, substrate balance, and appetite profile. Am J Clin Nutr 89, 831838.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed