Skip to main content Accessibility help

Defining best practice for microarray analyses in nutrigenomic studies

  • Paola Garosi (a1), Carlotta De Filippo (a2), Marjan van Erk (a3), Philippe Rocca-Serra (a4), Susanna-Assunta Sansone (a4) and Ruan Elliott (a1)...


Microarrays represent a powerful tool for studies of diet–gene interactions. Their use is, however, associated with a number of technical challenges and potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues associated with performing nutritional microarray studies, often means that compromises have to be made in the number and type of samples analysed. Additionally, technical variations between array platforms and analytical procedures will almost inevitably lead to differences in the transcriptional responses observed. Consequently, conflicting data may be produced, important effects may be missed and/or false leads generated (e.g. apparent patterns of differential gene regulation that ultimately prove to be incorrect or not significant). This is likely to be particularly true in the field of nutrition, in which we expect that many dietary bioactive agents at nutritionally relevant concentrations will elicit subtle changes in gene transcription that may be critically important in biological terms but will be difficult to detect reliably. Thus, great care should always be taken in designing and executing microarray studies. This article seeks to provide an overview of both the main practical and theoretical considerations in microarray use that represent potential sources of technical variation and error. Wherever possible, recommendations are made on what we propose to be the best approach. The overall aims are to provide a basic framework of advice for researchers who are new to the use of microarrays and to promote a discussion of standardisation and best practice in the field.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Defining best practice for microarray analyses in nutrigenomic studies
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Defining best practice for microarray analyses in nutrigenomic studies
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Defining best practice for microarray analyses in nutrigenomic studies
      Available formats


Corresponding author

*Corresponding author: Dr Paola Garosi, fax +44 (0) 1603 507723, email,


Hide All
Ahmed, AA, Vias, M, Iyer, NG, Caldas, C & Brenton, JD (2004) Microarray segmentation methods significantly influence data precision. Nucleic Acids Res 32, e50.
Badiee, A, Eiken, HG, Steen, VS & Lovlie, R (2003) Evaluation of five different cDNA labelling methods for microarrays using spike controls. BMC Biotechnol 3, 23.
Baker, VA, Harries, HM & Waring, JF (2004) Clofibrate-induced gene expression changes in rat-liver: a cross laboratory analysis using membrane cDNA arrays. Environ Health Perspect 112, 428438.
Baugh, LR, Hill, AA, Brown, E & Hunter, CP (2001) Quantitative analysis of mRNA amplification by in vivo transcription. Nucleic Acid Res 29, E29.
Benes, V & Muckenthaler, M (2003) Standardization of protocols in cDNA microarray analysis. Trends Biochem Sci 28, 244249.
Bolstad, BM, Irizarry, RA, Astrand, M & Speed, TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185193.
Brazma, A, Hingkamp, P & Quackenbush, J (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nat Genet 29, 365371.
Cao, YA, Lee, SY, Kim, JW, Chang, MS & & Choi, S (2003) Cross comparison of DNA microarray platforms. Brief communication on:
Chiang, MK & Melton, DA (2003) Single-cell transcript analysis of pancreas development. Dev Cell 4, 383393.
Chu, TM, Deng, S, Wolfinger, R, Paules, RS & Hamadeh, HK (2004) Cross-site comparison of gene expression data reveals high similarity. Environ Health Perspect 112, 4 449455.
Cui, X & Churchill, GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4, 210219.
Dahlquist, KD, Salomonis, N, Iranians, K, Lawlor, SC & Conklin, BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31, 1920.
Draghici, S (2002) Statistical intelligence: effective analysis of high-density microarray data. Drug Discov Today 7, 5563Suppl.
Duggan, DG, Bittner, M, Chen, Y, Meltzer, P & Trent, JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21, 1014.
Efron, B, Tibshirani, R, Storey, JD & Tusher, V (2001) Empirical Bayes analysis of microarray data. J Am Stat Assoc 96, 11511160.
Forster, T, Roy, D & Ghazal, P (2003) Experiments using microarray technology: limitations and standard operating procedures. J Endocrinol 178, 195204.
Grosu, P, Townsend, JP, Hart, DL & Cavalieri, D (2002) Pathway Processor: a tool for integrating whole-genome expression results into metabolic networks. Genome Res 12, 11211126.
Hedge, PQ, Rong, K, Abernathy, C, Gay, S, Dharap, R, Gaspards, J, Earle-Hughes, E & Snerud, E (2002) A concise guide to cDNA microarray analysis. II. Biotechniques 29, 548562.
Hoffmann, R & Valencia, A (2004) A gene network for navigating the literature. Nat Genet 36, 664.
Hwa, Yang, Y, Speed T (2002) Design issues for cDNA microarray experiments. Nat Rev Genet 3, 579588.
Ihaka, R & Gentleman, R (1996) A language for data analysis and graphics. J Comput Graph Stat 5, 299314.
Kane, MD, Jatkoe, TA, Stumpf, CR, Lu, J, Thomas, JD & Madore, SJ (2000) Assessment of the sensitivity and specificity of oligonucleotide (50mer) microarrays. Nucleic Acid Res 28, 45524557.
Kerr, MK (2003) Design considerations for efficient and effective microarray studies. Biometrics 59, 822828.
Kerr, MK & Churchill, GA (2001) Experimental design for gene expression microarrays. Biostatistics 2, 183201.
Kerr, K, Martin, M & Churchill, G (2001) Analysis of variance for gene expression microarray data. J Comput Biol 7, 2327.
Kim, H, Zhao, B, Snerud, EC, Haas, BJ, Town, CD & Quackenbush, J (2002) Use of RNA and genomic DNA references for inferred comparison in DNA microarray analyses. Biotechniques 33, 924930.
Kroll, TC & Wolfl, S (2002) Ranking: a closer look on globalisation methods for normalisation of gene expression arrays. Nucleic Acids Res 30 e50.
Long, AD, Mangalam, HJ, Chann, BYP, Tolleri, L, Hatfield, GW & Baldi, P (2001) Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. J Biol Chem 276, 1993719944.
Lyng, H, Badiee, A, Svendsrud, D, Hovig, E, Myklebost, O & Stokke, T (2004) Profound influence of microarray scanner characteristics on gene expression ratios: analysis and procedure for correction. BMC Genomics 5, 1019.
Manduchi, E, Scearce, LM, Brestelli, JE, Grant, GR, Kaestner, KH & Stoeckert, CJ (2002) Comparison of different labelling methods for two-channel high-density microarray experiments. Physiol Genomics 10, 169179.
Misra, J, Schmitt, W, Hwang, D, Hsiao, LL, Gullans, S & Stephanopoulos, G (2002) Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res 12, 11121120.
Naderi, A, Ahmed, AA, Barbosa-Morais, NL, Aparicio, S, Brenton, JD & Caldas, C (2004) Expression microarray reproducibility is improved by optimising purification steps in RNA amplification and labelling. BMC Genomics 5, 922.
Nilsen, TW, Grayzel, J & Prensky, W (1997) Dendritic nucleic acid structures. J Theor Biol 187, 273284.
Novoradovskaya, N, Whitfield, ML & Basehore, LS (2004) Universal reference RNA as a standard for microarray experiments. BMC Genomics 5, 2032.
Pandey, R, Guru, RK & Mount, DW (2004) Pathway Miner: extracting gene association networks from molecular pathways for predicting the biological significance of gene expression microarray data. Bioinformatics 20, 21562158.
Park, CH, Jeong, HJ, Jung, JJ, Lee, GY, Kim, SC, Kim, TS, Yang, SH, Chung, HC & Rha, SY (2004) Fabrication of high quality cDNA microarray using a small amount of cDNA. Int J Mol Med 13, 675679.
Quackenbush, J (2001) Computational analysis of microarray data. Nat Genet 2, 418427.
Quackenbush, J (2002) Microarray normalization and transformation. Nat Genet 32, 496501.
Reiner, A, Yekutieli, D & Benjamini, Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368375.
Rickman, DS, Herbert, CJ & Aggerbeck, LP (2003) Optimising solutions for increased reproducibility of cDNA microarrays. Nucleic Acid Res 31 e109.
Roth, ME, Feng, L & McConnell, KJ (2004) Expression profiling using a hexamer-based universal microarray. Nat Biotechnol 22, 418426.
Ryan, MM & Huffaker, SJ (2004) Application and optimisation of microarray technologies for human post-mortem brain studies. Biol Psychiatr 55, 329336.
Slonim, DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32, 502508.
Tan, PK, Downey, TJ & Spitznagel, JR (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acid Res 31, 56765684.
Taniguchi, M, Miura, K, Iwao, H & Yamanaka, S (2001) Quantitative assessment of DNA microarrays – comparison with Northern blot analysis. Genomics 71, 3439.
Taylor, S, Smith, S, Windle, B, Guiseppi-Elie, A (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acid Res 31 e87.
Tolstrup, N, Nielsen, N, Kolberg, JG, Frankel, AM, Vissing, H & Kauppinen, S (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acid Res 31, 37583762.
Townsend, JP (2003) Multifactorial expression design and transitivity of ratios with spotted DNA microarrays. BMC Genomics 4, 4149.
Tzu-Ming, C, Deng, S, Wolfinger, R, Paules, RS & Hamadeh, HK (2004) Cross-site comparison of gene expression data reveals high similarity. Environ Health Perspect 112, 449455.
Ulrich, RG, Rockett, JC, Gibson, GG & Pettit, SD (2004) Overview of an interlaboratory collaboration on evaluating the effects of model hepatotoxicants on hepatic gene expression. Environ Health Perspect 112, 423427.
van de, Peppel, J, Kemmeren, P, van, Bakel, H, Radonjic, M, van Leenen, D & Holstege, FC (2003) Monitoring global messenger RNA changes in externally controlled microarray experiments. EMBO Rep 4, 387393.
Van Gelder, RN, von Zastrow, ME, Yool, A, Dement, WC, Barchas, JD & Eberwine, JH (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87, 16631667.
Van Hal, FNLW, Vorst, O, Kramer, E, Hall, DR & Keijer, J (2002) Factors influencing cDNA microarray hybridisation on silylated glass slides. Anal Biochem 308, 517.
Wang, H-Y, Malek, RL, Kwitek, AE, Greene, AS & Luu, TV (2003) Assessing unmodified 70-mer oligonucleotide probe performance on glass slide microarrays. Genome Biol 4 R5.
Waring, JF, Ulrich, RG, Flint, N, Morfitt, D, Kalkuhl, A, Staedtler, F, Lawton, M, Beekman, JM & Suter, L (2004) Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene. Environ Health Perspect 112, 439448.
Wrobel, G, Schlingemann, J, Hummerich, L, Kramer, H, Lichter, P & Hahn, M (2003) Optimisation of high-density cDNA microarray protocols by ‘design experiments’. Nucleic Acid Res 31 e67.
Wurmbach, E, Yuen, T & Sealfon, SC (2003) Focused microarray analysis. Methods 31, 306316.
Xiang, C, Chen, M, Ma, L, Phan, QN, Inman, JM, Kozhich, OA & Brownstein, MJ (2003) A new strategy to amplify degraded RNA from small tissue samples for microarray studies Nucleic Acids Res e53.
Yang, YH, Buckley, MJ, Dudoit, S & Speed, TP (2001a) Comparison of Methods for Image Analysis on cDNA Microarray Data. Technical report no. 584 Berkley, CA Department of Statistics, University of California
Yang, HY, Buckley, MJ & Speed, TP (2001b) Analysis of cDNA microarray images. Brief Bioinform 2, 341349.
Yang, IV, Chen, E & Hasseman, JP (2002) Within the fold: assessing differential expression measures and reproductability in micro:array assays. Genome Biol 24, 3.
Zhou, Y & Abagyan, R (2002) Match-only Integral Distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3, 311.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed