Skip to main content
×
×
Home

Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism

  • José Lopez-Miranda (a1), Christine Williams (a2) and Denis Lairon (a3)
Abstract

Most of diurnal time is spent in a postprandial state due to successive meal intakes during the day. As long as the meals contain enough fat, a transient increase in triacylglycerolaemia and a change in lipoprotein pattern occurs. The extent and kinetics of such postprandial changes are highly variable and are modulated by numerous factors. This review focuses on factors affecting postprandial lipoprotein metabolism and genes, their variability and their relationship with intermediate phenotypes and risk of CHD. Postprandial lipoprotein metabolism is modulated by background dietary pattern as well as meal composition (fat amount and type, carbohydrate, protein, fibre, alcohol) and several lifestyle conditions (physical activity, tobacco use), physiological factors (age, gender, menopausal status) and pathological conditions (obesity, insulin resistance, diabetes mellitus). The roles of many genes have been explored in order to establish the possible implications of their variability in lipid metabolism and CHD risk. The postprandial lipid response has been shown to be modified by polymorphisms within the genes for apo A-I, A-IV, A-V, E, B, C-I and C-III, lipoprotein lipase, hepatic lipase, fatty acid binding and transport proteins, microsomal triglyceride transfer protein and scavenger receptor class B type I. Overall, the variability in postprandial response is important and complex, and the interactions between nutrients or dietary or meal compositions and gene variants need further investigation. The extent of present knowledge and needs for future studies are discussed in light of ongoing developments in nutrigenetics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Denis Lairon, fax +33 4 91 78 21 01, email denis.lairon@medecine.univ-mrs.fr.
References
Hide All
1Cohn, JS, McNamara, JR, Cohn, SD, Ordovas, JM & Schaefer, EJ (1988) Postprandial plasma lipoprotein changes in human subjects of different ages. J Lipid Res 29, 469479.
2Zilversmit, DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.
3Groot, PH, van Stiphout, WA, Krauss, XH, et al. (1991) Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 11, 653662.
4Patsch, JR, Miesenbock, G, Hopferwieser, T, Muhlberger, V, Knapp, E, Dunn, JK, Gotto, AM Jr & Patsch, W (1992) Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 12, 13361345.
5Karpe, F, Tornvall, P, Olivecrona, T, Steiner, G, Carlson, LA & Hamsten, A (1993) Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 98, 3349.
6Meyer, E, Westerveld, HT, de Ruyter-Meijstek, FC, van Greevenbroek, MM, Rienks, R, van Rijn, HJ, Erkelens, DW & de Bruin, TW (1996) Abnormal postprandial apolipoprotein B-48 and triglyceride responses in normolipidemic women with greater than 70 % stenotic coronary artery disease: a case-control study. Atherosclerosis 124, 221235.
7Ginsberg, HN, Jones, J, Blaner, WS, Thomas, A, Karmally, W, Fields, L, Blood, D & Begg, MD (1995) Association of postprandial triglyceride and retinyl palmitate responses with newly diagnosed exercise-induced myocardial ischemia in middle-aged men and women. Arterioscler Thromb Vasc Biol 15, 18291838.
8Ryu, JE, Howard, G, Craven, TE, Bond, MG, Hagaman, AP & Crouse, JR 3rd (1992) Postprandial triglyceridemia and carotid atherosclerosis in middle-aged subjects. Stroke 23, 823828.
9Karpe, F, de Faire, U, Mercuri, M, Bond, MG, Hellenius, ML & Hamsten, A (1998) Magnitude of alimentary lipemia is related to intima-media thickness of the common carotid artery in middle-aged men. Atherosclerosis 141, 307314.
10Boquist, S, Ruotolo, G, Tang, R, Bjorkegren, J, Bond, MG, de Faire, U, Karpe, F & Hamsten, A (1999) Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 100, 723728.
11Hamsten, A, Silveira, A, Boquist, S, Tang, R, Bond, MG, de Faire, U & Bjorkegren, J (2005) The apolipoprotein CI content of triglyceride-rich lipoproteins independently predicts early atherosclerosis in healthy middle-aged men. J Am Coll Cardiol 45, 10131017.
12Uiterwaal, CS, Grobbee, DE, Witteman, JC, van Stiphout, WA, Krauss, XH, Havekes, LM, de Bruijn, AM, van Tol, A & Hofman, A (1994) Postprandial triglyceride response in young adult men and familial risk for coronary atherosclerosis. Ann Intern Med 121, 576583.
13Tiret, L, Gerdes, C, Murphy, MJ, Dallongeville, J, Nicaud, V, O'Reilly, DS, Beisiegel, U & De Backer, G (2000) Postprandial response to a fat tolerance test in young adults with a paternal history of premature coronary heart disease – the EARS II study (European Atherosclerosis Research Study). Eur J Clin Invest 30, 578585.
14Phillips, NR, Waters, D & Havel, RJ (1993) Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 88, 27622770.
15Karpe, F (1999) Postprandial lipoprotein metabolism and atherosclerosis. J Intern Med 246, 341355.
16Speidel, MT, Booyse, FM, Abrams, A, Moore, MA & Chung, BH (1990) Lipolyzed hypertriglyceridemic serum and triglyceride-rich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells. High density lipoproteins inhibit this cytotoxicity. Thromb Res 58, 251264.
17Vogel, RA, Corretti, MC & Plotnick, GD (1997) Effect of a single high-fat meal on endothelial function in healthy subjects. Am J Cardiol 79, 350354.
18Doi, H, Kugiyama, K, Oka, H, Sugiyama, S, Ogata, N, Koide, SI, Nakamura, SI & Yasue, H (2000) Remnant lipoproteins induce proatherothrombogenic molecules in endothelial cells through a redox-sensitive mechanism. Circulation 102, 670676.
19Griffin, BA (1999) Lipoprotein atherogenicity: an overview of current mechanisms. Proc Nutr Soc 58, 163169.
20Miller, GJ (1998) Postprandial lipaemia and haemostatic factors. Atherosclerosis 141, Suppl. 1, S47S51.
21Sanders, TA, Oakley, FR, Cooper, JA & Miller, GJ (2001) Influence of a stearic acid-rich structured triacylglycerol on postprandial lipemia, factor VII concentrations, and fibrinolytic activity in healthy subjects. Am J Clin Nutr 73, 715721.
22Tholstrup, T, Miller, GJ, Bysted, A & Sandstrom, B (2003) Effect of individual dietary fatty acids on postprandial activation of blood coagulation factor VII and fibrinolysis in healthy young men. Am J Clin Nutr 77, 11251132.
23Broijersen, A, Karpe, F, Hamsten, A, Goodall, AH & Hjemdahl, P (1998) Alimentary lipemia enhances the membrane expression of platelet P-selectin without affecting other markers of platelet activation. Atherosclerosis 137, 107113.
24Hyson, DA, Paglieroni, TAG, Wun, T & Rutledge, JC (2002) Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin Appl Thromb Hemost 8, 147155.
25Cohen, JC & Berger, GM (1990) Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. J Lipid Res 31, 597602.
26van Tol, A, van der Gaag, MS, Scheek, LM, van Gent, T & Hendriks, HF (1998) Changes in postprandial lipoproteins of low and high density caused by moderate alcohol consumption with dinner. Atherosclerosis 141, Suppl. 1, S101S103.
27Williams, CM (1998) Dietary interventions affecting chylomicron and chylomicron remnant clearance. Atherosclerosis 141, Suppl. 1, S87S92.
28Tinker, LF, Parks, EJ, Behr, SR, Schneeman, BO & Davis, PA (1999) (n-3) fatty acid supplementation in moderately hypertriglyceridemic adults changes postprandial lipid and apolipoprotein B responses to a standardized test meal. J Nutr 129, 11261134.
29Cohen, JC, Noakes, TD & Benade, AJ (1988) Serum triglyceride responses to fatty meals: effects of meal fat content. Am J Clin Nutr 47, 825827.
30Dubois, C, Armand, M, Azais-Braesco, V, et al. (1994) Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 60, 374382.
31Murphy, MC, Isherwood, SG, Sethi, S, Gould, BJ, Wright, JW, Knapper, JA & Williams, CM (1995) Postprandial lipid and hormone responses to meals of varying fat contents: modulatory role of lipoprotein lipase? Eur J Clin Nutr 49, 578588.
32Dubois, C, Beaumier, G, Juhel, C, Armand, M, Portugal, H, Pauli, AM, Borel, P, Latge, C & Lairon, D (1998) Effects of graded amounts (0–50 g) of dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. Am J Clin Nutr 67, 3138.
33Jackson, KG, Robertson, MD, Fielding, BA, Frayn, KN & Williams, CM (2002) Olive oil increases the number of triacylglycerol-rich chylomicron particles compared with other oils: an effect retained when a second standard meal is fed. Am J Clin Nutr 76, 942949.
34Williams, CM, Moore, F, Morgan, L & Wright, J (1992) Effects of n-3 fatty acids on postprandial triacylglycerol and hormone concentrations in normal subjects. Br J Nutr 68, 655666.
35Roche, HM, Zampelas, A, Jackson, KG, Williams, CM & Gibney, MJ (1998) The effect of test meal monounsaturated fatty acid: saturated fatty acid ratio on postprandial lipid metabolism. Br J Nutr 79, 419424.
36Thomsen, C, Rasmussen, O, Lousen, T, Holst, JJ, Fenselau, S, Schrezenmeir, J & Hermansen, K (1999) Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am J Clin Nutr 69, 11351143.
37Mekki, N, Charbonnier, M, Borel, P, Leonardi, J, Juhel, C, Portugal, H & Lairon, D (2002) Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. J Nutr 132, 36423649.
38Sakr, SW, Attia, N, Haourigui, M, Paul, JL, Soni, T, Vacher, D & Girard-Globa, A (1997) Fatty acid composition of an oral load affects chylomicron size in human subjects. Br J Nutr 77, 1931.
39Armand, M, Pasquier, B, Andre, M, et al. (1999) Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am J Clin Nutr 70, 10961106.
40Cabezas, MC, de Bruin, TW, Jansen, H, Kock, LA, Kortlandt, W & Erkelens, DW (1993) Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler Thromb 13, 804814.
41Lichtenstein, AH, Ausman, LM, Carrasco, W, Jenner, JL, Gualtieri, LJ, Goldin, BR, Ordovas, JM & Schaefer, EJ (1993) Effects of canola, corn, and olive oils on fasting and postprandial plasma lipoproteins in humans as part of a National Cholesterol Education Program Step 2 diet. Arterioscler Thromb 13, 15331542.
42Tholstrup, T, Sandstrom, B, Bysted, A & Holmer, G (2001) Effect of 6 dietary fatty acids on the postprandial lipid profile, plasma fatty acids, lipoprotein lipase, and cholesterol ester transfer activities in healthy young men. Am J Clin Nutr 73, 198208.
43Zampelas, A, Peel, AS, Gould, BJ, Wright, J & Williams, CM (1994) Polyunsaturated fatty acids of the n-6 and n-3 series: effects on postprandial lipid and apolipoprotein levels in healthy men. Eur J Clin Nutr 48, 842848.
44Jackson, KG, Zampelas, A, Knapper, JM, Culverwell, CC, Wright, J, Gould, BJ & Williams, CM (1999) Lack of influence of test meal fatty acid composition on the contribution of intestinally-derived lipoproteins to postprandial lipaemia. Br J Nutr 81, 5157.
45Vessby, B, Unsitupa, M, Hermansen, K, et al. (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU Study. Diabetologia 44, 312319.
46Burdge, GC, Powell, J & Calder, PC (2006) Lack of effect of meal fatty acid composition on postprandial lipid, glucose and insulin responses in men and women aged 50-65 years consuming their habitual diets. Br J Nutr 96, 489500.
47Jensen, MM, Christensen, MS & Hoy, CE (1994) Intestinal absorption of octanoic, decanoic, and linoleic acids: effect of triglyceride structure. Ann Nutr Metab 38, 104116.
48Sanders, TA, de Grassi, T, Miller, GJ & Morrissey, JH (2000) Influence of fatty acid chain length and cis/trans isomerization on postprandial lipemia and factor VII in healthy subjects (postprandial lipids and factor VII). Atherosclerosis 149, 413420.
49Sanders, TA, Berry, SE & Miller, GJ (2003) Influence of triacylglycerol structure on the postprandial response of factor VII to stearic acid-rich fats. Am J Clin Nutr 77, 777782.
50Jackson, KG, Robertson, MD, Fielding, BA, Frayn, KN & Williams, CM (2002) Measurement of apolipoprotein B-48 in the Svedberg flotation rate (S(f))>400, S(f) 60–400 and S(f) 20–60 lipoprotein fractions reveals novel findings with respect to the effects of dietary fatty acids on triacylglycerol-rich lipoproteins in postmenopausal women. Clin Sci (Lond) 103, 227237.
51Jackson, KG, Wolstencroft, EJ, Bateman, PA, Yaqoob, P & Williams, CM (2005) Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids. Am J Clin Nutr 81, 2534.
52Black, IL, Roche, HM, Tully, AM & Gibney, MJ (2002) Acute-on-chronic effects of fatty acids on intestinal triacylglycerol-rich lipoprotein metabolism. Br J Nutr 88, 661669.
53Roche, HM, Zampelas, A, Knapper, JM, et al. (1998) Effect of long-term olive oil dietary intervention on postprandial triacylglycerol and factor VII metabolism. Am J Clin Nutr 68, 552560.
54Weintraub, MS, Zechner, R, Brown, A, Eisenberg, S & Breslow, JL (1988) Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. J Clin Invest 82, 18841893.
55Zampelas, A, Roche, H, Knapper, JM, et al. (1998) Differences in postprandial lipaemic response between Northern and Southern Europeans. Atherosclerosis 139, 8393.
56Silva, KD, Kelly, CN, Jones, AE, Smith, RD, Wootton, SA, Miller, GJ & Williams, CM (2003) Chylomicron particle size and number, factor VII activation and dietary monounsaturated fatty acids. Atherosclerosis 166, 7384.
57Rivellese, AA, Maffettone, A, Vessby, B, Uusitupa, M, Hermansen, K, Berglund, L, Louheranta, A, Meyer, BJ & Riccardi, G (2003) Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis 167, 149158.
58Sanders, TA, Oakley, FR, Crook, D, Cooper, JA & Miller, GJ (2003) High intakes of trans monounsaturated fatty acids taken for 2 weeks do not influence procoagulant and fibrinolytic risk markers for CHD in young healthy men. Br J Nutr 89, 767776.
59Roche, HM & Gibney, MJ (1996) Postprandial triacylglycerolaemia: the effect of low-fat dietary treatment with and without fish oil supplementation. Eur J Clin Nutr 50, 617624.
60Khan, S, Minihane, AM, Talmud, PJ, Wright, JW, Murphy, MC, Williams, CM & Griffin, BA (2002) Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype. J Lipid Res 43, 979985.
61Park, Y & Harris, WS (2003) Omega-3 fatty acid supplementation accelerates chylomicron triglyceride clearance. J Lipid Res 44, 455463.
62Finnegan, YE, Minihane, AM, Leigh-Firbank, EC, Kew, S, Meijer, GW, Muggli, R, Calder, PC & Williams, CM (2003) Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr 77, 783795.
63Harris, WS & Muzio, F (1993) Fish oil reduces postprandial triglyceride concentrations without accelerating lipid-emulsion removal rates. Am J Clin Nutr 58, 6874.
64Westphal, S, Orth, M, Ambrosch, A, Osmundsen, K & Luley, C (2000) Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. Am J Clin Nutr 71, 914920.
65Harris, WS, Connor, WE, Illingworth, DR, Rothrock, DW & Foster, DM (1990) Effects of fish oil on VLDL triglyceride kinetics in humans. J Lipid Res 31, 15491558.
66Nozaki, S, Garg, A, Vega, GL & Grundy, SM (1991) Postheparin lipolytic activity and plasma lipoprotein response to omega-3 polyunsaturated fatty acids in patients with primary hypertriglyceridemia. Am J Clin Nutr 53, 638642.
67Harris, WS, Lu, G, Rambjor, GS, Walen, AI, Ontko, JA, Cheng, Q & Windsor, SL (1997) Influence of n-3 fatty acid supplementation on the endogenous activities of plasma lipases. Am J Clin Nutr 66, 254260.
68Parks, EJ, Krauss, RM, Christiansen, MP, Neese, RA & Hellerstein, MK (1999) Effects of a low-fat, high-carbohydrate diet on VLDL-triglyceride assembly, production, and clearance. J Clin Invest 104, 10871096.
69Roche, HM (1999) Dietary carbohydrates and triacylglycerol metabolism. Proc Nutr Soc 58, 201207.
70Grant, KI, Marais, MP & Dhansay, MA (1994) Sucrose in a lipid-rich meal amplifies the postprandial excursion of serum and lipoprotein triglyceride and cholesterol concentrations by decreasing triglyceride clearance. Am J Clin Nutr 59, 853860.
71Harbis, A, Defoort, C, Narbonne, H, et al. (2001) Acute hyperinsulinism modulates plasma apolipoprotein B-48 triglyceride-rich lipoproteins in healthy subjects during the postprandial period. Diabetes 50, 462469.
72Harbis, A, Perdreau, S, Vincent-Baudry, S, et al. (2004) Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. Am J Clin Nutr 80, 896902.
73Cara, L, Dubois, C, Borel, P, Armand, M, Senft, M, Portugal, H, Pauli, AM, Bernard, PM & Lairon, D (1992) Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults. Am J Clin Nutr 55, 8188.
74Lia, A, Andersson, H, Mekki, N, Juhel, C, Senft, M & Lairon, D (1997) Postprandial lipemia in relation to sterol and fat excretion in ileostomy subjects given oat-bran and wheat test meals. Am J Clin Nutr 66, 357365.
75Higashi, K, Abata, S, Iwamoto, N, Ogura, M, Yamashita, T, Ishikawa, O, Ohslzu, F & Nakamura, H (2001) Effects of soy protein on levels of remnant-like particles cholesterol and vitamin E in healthy men. J Nutr Sci Vitaminol (Tokyo) 47, 283288.
76Westphal, S, Taneva, E, Kastner, S, Martens-Lobenhoffer, J, Bode-Boger, S, Kropf, S, Dierkes, J & Luley, C (2006) Endothelial dysfunction induced by postprandial lipemia is neutralized by addition of proteins to the fatty meal. Atherosclerosis 185, 313319.
77Mamo, JC, James, AP, Soares, MJ, Griffiths, DG, Purcell, K & Schwenke, JL (2005) A low-protein diet exacerbates postprandial chylomicron concentration in moderately dyslipidaemic subjects in comparison to a lean red meat protein-enriched diet. Eur J Clin Nutr 59, 11421148.
78Hardman, AE & Aldred, HE (1995) Walking during the postprandial period decreases alimentary lipaemia. J Cardiovasc Risk 2, 7178.
79Tsetsonis, NV & Hardman, AE (1996) Reduction in postprandial lipemia after walking: influence of exercise intensity. Med Sci Sports Exerc 28, 12351242.
80Tsetsonis, NV & Hardman, AE (1996) Effects of low and moderate intensity treadmill walking on postprandial lipaemia in healthy young adults. Eur J Appl Physiol Occup Physiol 73, 419426.
81Hardman, AE (1998) The influence of exercise on postprandial triacylglycerol metabolism. Atherosclerosis 141, Suppl. 1, S93S100.
82Thomas, TR, Horner, KE, Langdon, MM, Zhang, JQ, Krul, ES, Sun, GY & Cox, RH (2001) Effect of exercise and medium-chain fatty acids on postprandial lipemia. J Appl Physiol 90, 12391246.
83Sady, SP, Thompson, PD, Cullinane, EM, Kantor, MA, Domagala, E & Herbert, PN (1986) Prolonged exercise augments plasma triglyceride clearance. JAMA 256, 25522555.
84Ferguson, MA, Alderson, NL, Trost, SG, Essig, DA, Burke, JR & Durstine, JL (1998) Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase. J Appl Physiol 85, 11691174.
85Zhang, JQ, Smith, B, Langdon, MM, Messimer, HL, Sun, GY, Cox, RH, James-Kracke, M & Thomas, TR (2002) Changes in LPLa and reverse cholesterol transport variables during 24-h postexercise period. Am J Physiol Endocrinol Metab 283, E267E274.
86Petitt, DS & Cureton, KJ (2003) Effects of prior exercise on postprandial lipemia: a quantitative review. Metabolism 52, 418424.
87Gill, JM, Mees, GP, Frayn, KN & Hardman, AE (2001) Moderate exercise, postprandial lipaemia and triacylglycerol clearance. Eur J Clin Invest 31, 201207.
88Smith, BK, Sun, GY, Donahue, OM & Thomas, TR (2004) Exercise plus n-3 fatty acids: additive effect on postprandial lipemia. Metabolism 53, 13651371.
89Axelsen, M, Eliasson, B, Joheim, E, Lenner, RA, Taskinen, MR & Smith, U (1995) Lipid intolerance in smokers. J Intern Med 237, 449455.
90Mero, N, Syvanne, M, Eliasson, B, Smith, U & Taskinen, MR (1997) Postprandial elevation of ApoB-48-containing triglyceride-rich particles and retinyl esters in normolipemic males who smoke. Arterioscler Thromb Vasc Biol 17, 20962102.
91Sharrett, AR, Heiss, G, Chambless, LE, Boerwinkle, E, Coady, SA, Folsom, AR & Patsch, W (2001) Metabolic and lifestyle determinants of postprandial lipemia differ from those of fasting triglycerides: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol 21, 275281.
92Fielding, BA, Reid, G, Grady, M, Humphreys, SM, Evans, K & Frayn, KN (2000) Ethanol with a mixed meal increases postprandial triacylglycerol but decreases postprandial non-esterified fatty acid concentrations. Br J Nutr 83, 597604.
93Siler, SQ, Neese, RA, Parks, EJ & Hellerstein, MK (1998) VLDL-triglyceride production after alcohol ingestion, studied using [2-13C1] glycerol. J Lipid Res 39, 23192328.
94Pownall, HJ, Ballantyne, CM, Kimball, KT, Simpson, SL, Yeshurun, D & Gotto, AM Jr (1999) Effect of moderate alcohol consumption on hypertriglyceridemia: a study in the fasting state. Arch Intern Med 159, 981987.
95Couch, SC, Isasi, CR, Karmally, W, et al. (2000) Predictors of postprandial triacylglycerol response in children: the Columbia University Biomarkers Study. Am J Clin Nutr 72, 11191127.
96Jackson, KG, Knapper-Francis, JM, Morgan, LM, Webb, DH, Zampelas, A & Williams, CM (2003) Exaggerated postprandial lipaemia and lower post-heparin lipoprotein lipase activity in middle-aged men. Clin Sci (Lond) 105, 457466.
97van Beek, AP, de Ruijter-Heijstek, FC, Erkelens, DW & de Bruin, TW (1999) Menopause is associated with reduced protection from postprandial lipemia. Arterioscler Thromb Vasc Biol 19, 27372741.
98Ossewaarde, ME, Dallinga-Thie, GM, Bots, ML, van der Schouw, YT, Rabelink, TJ, Grobbee, DE & Westerveld, HT (2003) Treatment with hormone replacement therapy lowers remnant lipoprotein particles in healthy postmenopausal women: results from a randomized trial. Eur J Clin Invest 33, 376382.
99Lewis, GF, O'Meara, NM, Soltys, PA, Blackman, JD, Iverius, PH, Druetzler, AF, Getz, GS & Polonsky, KS (1990) Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test. J Clin Endocrinol Metab 71, 10411050.
100Couillard, C, Bergeron, N, Prud'homme, D, Bergeron, J, Tremblay, A, Bouchard, C, Mauriege, P & Despres, JP (1998) Postprandial triglyceride response in visceral obesity in men. Diabetes 47, 953960.
101Hadjadj, S, Paul, JL, Meyer, L, Durlach, V, Verges, B, Ziegler, O, Drouin, P & Guerci, B (1999) Delayed changes in postprandial lipid in young normolipidemic men after a nocturnal vitamin A oral fat load test. J Nutr 129, 16491655.
102Mekki, N, Christofilis, MA, Charbonnier, M, et al. (1999) Influence of obesity and body fat distribution on postprandial lipemia and triglyceride-rich lipoproteins in adult women. J Clin Endocrinol Metab 84, 184191.
103Goldberg, IJ, Vanni-Reyes, T, Ramakrishnan, S, Holleran, S & Ginsberg, HN (2000) Circulating lipoprotein profiles are modulated differently by lipoprotein lipase in obese humans. J Cardiovasc Risk 7, 4147.
104James, AP, Watts, GF, Barrett, PH, Smith, D, Pal, S, Chan, DC & Mamo, JC (2003) Effect of weight loss on postprandial lipemia and low-density lipoprotein receptor binding in overweight men. Metabolism 52, 136141.
105Reaven, G (2002) Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation 106, 286288.
106Taskinen, MR (2002) Diabetic dyslipidemia. Atheroscler Suppl 3, 4751.
107Jeppesen, J, Hollenbeck, CB, Zhou, MY, Coulston, AM, Jones, C, Chen, YD & Reaven, GM (1995) Relation between insulin resistance, hyperinsulinemia, postheparin plasma lipoprotein lipase activity, and postprandial lipemia. Arterioscler Thromb Vasc Biol 15, 320324.
108Boquist, S, Hamsten, A, Karpe, F & Ruotolo, G (2000) Insulin and non-esterified fatty acid relations to alimentary lipaemia and plasma concentrations of postprandial triglyceride-rich lipoproteins in healthy middle-aged men. Diabetologia 43, 185193.
109Haffner, SM (2002) Lipoprotein disorders associated with type 2 diabetes mellitus and insulin resistance. Am J Cardiol 90, 55i61i.
110Hirany, S, O'Byrne, D, Devaraj, S & Jialal, I (2000) Remnant-like particle-cholesterol concentrations in patients with type 2 diabetes mellitus and end-stage renal disease. Clin Chem 46, 667672.
111Hirano, T, Yoshino, G, Kashiwazaki, K & Adachi, M (2001) Doxazosin reduces prevalence of small dense low density lipoprotein and remnant-like particle cholesterol levels in nondiabetic and diabetic hypertensive patients. Am J Hypertens 14, 908913.
112Howard, BV, Robbins, DC, Sievers, ML, et al. (2000) LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: the Strong Heart Study. Arterioscler Thromb Vasc Biol 20, 830835.
113Guerin, M, Le Goff, W, Lassel, TS, Van Tol, A, Steiner, G & Chapman, MJ (2001) Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: impact of the degree of triglyceridemia. Arterioscler Thromb Vasc Biol 21, 282288.
114Schaefer, EJ, McNamara, JR, Shah, PK, Nakajima, K, Cupples, LA, Ordovas, JM & Wilson, PW (2002) Elevated remnant-like particle cholesterol and triglyceride levels in diabetic men and women in the Framingham Offspring Study. Diabetes Care 25, 989994.
115Masding, MG, Stears, AJ, Burdge, GC, Wootton, SA & Sandeman, DD (2003) Premenopausal advantages in postprandial lipid metabolism are lost in women with type 2 diabetes. Diabetes Care 26, 32433249.
116Masding, MG, Stears, AJ, Burdge, GC, Wootton, SA & Sandeman, DD (2006) The benefits of oestrogens on postprandial lipid metabolism are lost in post-menopausal women with type 2 diabetes. Diabet Med 23, 768774.
117Fielding, CJ, Shore, VG & Fielding, PE (1972) A protein cofactor of lecithin:cholesterol acyltransferase. Biochem Biophys Res Commun 46, 14931498.
118Reichl, D & Miller, NE (1989) Pathophysiology of reverse cholesterol transport. Insights from inherited disorders of lipoprotein metabolism. Arteriosclerosis 9, 785797.
119Calabresi, L, Cassinotti, M, Gianfranceschi, G, Safa, O, Murakami, T, Sirtori, CR & Franceschini, G (1993) Increased postprandial lipemia in Apo A-IMilano carriers. Arterioscler Thromb 13, 521528.
120Marin, C, Lopez-Miranda, J, Gomez, P, Paz, E, Perez-Martinez, P, Fuentes, F, Jimenez-Pereperez, JA, Ordovas, JM & Perez-Jimenez, F (2002) Effects of the human apolipoprotein A-I promoter G-A mutation on postprandial lipoprotein metabolism. Am J Clin Nutr 76, 319325.
121Ordovas, JM, Cassidy, DK, Civeira, F, Bisgaier, CL & Schaefer, EJ (1989) Familial apolipoprotein A-I, C-III, and A-IV deficiency and premature atherosclerosis due to deletion of a gene complex on chromosome 11. J Biol Chem 264, 1633916342.
122Goldberg, IJ, Scheraldi, CA, Yacoub, LK, Saxena, U & Bisgaier, CL (1990) Lipoprotein apoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV. J Biol Chem 265, 42664272.
123Steinmetz, A & Utermann, G (1985) Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV. J Biol Chem 260, 22582264.
124Menzel, HJ, Sigurdsson, G, Boerwinkle, E, Schrangl-Will, S, Dieplinger, H & Utermann, G (1990) Frequency and effect of human apolipoprotein A-IV polymorphism on lipid and lipoprotein levels in an Icelandic population. Hum Genet 84, 344346.
125de Knijff, P, Johansen, LG, Rosseneu, M, Frants, RR, Jespersen, J & Havekes, LM (1992) Lipoprotein profile of a Greenland Inuit population. Influence of anthropometric variables, apo E and A4 polymorphism, and lifestyle. Arterioscler Thromb 12, 13711379.
126Ostos, MA, Lopez-Miranda, J, Marin, C, Castro, P, Gomez, P, Paz, E, Jimenez Pereperez, JA, Ordovas, JM & Perez-Jimenez, F (2000) The apolipoprotein A-IV-360His polymorphism determines the dietary fat clearance in normal subjects. Atherosclerosis 153, 209217.
127Ostos, MA, Lopez-Miranda, J, Ordovas, JM, Marin, C, Blanco, A, Castro, P, Lopez-Segura, F, Jimenez-Pereperez, J & Perez-Jimenez, F (1998) Dietary fat clearance is modulated by genetic variation in apolipoprotein A-IV gene locus. J Lipid Res 39, 24932500.
128Weinberg, RB, Cook, VR, Beckstead, JA, Martin, DD, Gallagher, JW, Shelness, GS & Ryan, RO (2003) Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem 278, 3443834444.
129Ribalta, J, Figuera, L, Fernandez-Ballart, J, Vilella, E, Castro Cabezas, M, Masana, L & Joven, J (2002) Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem 48, 15971600.
130Vrablik, M, Horinek, A, Ceska, R, Adamkova, V, Poledne, R & Hubacek, JA (2003) Ser19 → Trp polymorphism within the apolipoprotein AV gene in hypertriglyceridaemic people. J Med Genet 40, e105.
131Masana, L, Ribalta, J, Salazar, J, Fernandez-Ballart, J, Joven, J & Cabezas, MC (2003) The apolipoprotein AV gene and diurnal triglyceridaemia in normolipidaemic subjects. Clin Chem Lab Med 41, 517521.
132Jang, Y, Kim, JY, Kim, OY, Lee, JE, Cho, H, Ordovas, JM & Lee, JH (2004) The − 1131T → C polymorphism in the apolipoprotein A5 gene is associated with postprandial hypertriacylglycerolemia; elevated small, dense LDL concentrations, and oxidative stress in nonobese Korean men. Am J Clin Nutr 80, 832840.
133Moreno, R, Perez-Jimenez, F, Marin, C, et al. (2006) A single nucleotide polymorphism of the apolipoprotein A-V gene − 1131T>C modulates postprandial lipoprotein metabolism. Atherosclerosis 189, 163–168.
134Carlsson, P, Darnfors, C, Olofsson, SO & Bjursell, G (1986) Analysis of the human apolipoprotein B gene; complete structure of the B-74 region. Gene 49, 29–51.
135Lopez-Miranda, J, Ordovas, JM, Ostos, MA, et al. (1997) Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus. Arterioscler Thromb Vasc Biol 17, 17651773.
136Boerwinkle, E & Chan, L (1989) A three codon insertion/deletion polymorphism in the signal peptide region of the human apolipoprotein B (APOB) gene directly typed by the polymerase chain reaction. Nucleic Acids Res 17, 4003.
137Byrne, CD, Wareham, NJ, Mistry, PK, Phillips, DI, Martensz, ND, Halsall, D, Talmud, PJ, Humphries, SE & Hales, CN (1996) The association between free fatty acid concentrations and triglyceride-rich lipoproteins in the post-prandial state is altered by a common deletion polymorphism of the apo B signal peptide. Atherosclerosis 127, 35–42.
138Regis-Bailly, A, Fournier, B, Steinmetz, J, Gueguen, R, Siest, G & Visvikis, S (1995) Apo B signal peptide insertion/deletion polymorphism is involved in postprandial lipoparticles' responses. Atherosclerosis 118, 23–34.
139Weisgraber, KH, Mahley, RW, Kowal, RC, Herz, J, Goldstein, JL & Brown, MS (1990) Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. J Biol Chem 265, 2245322459.
140Sehayek, E & Eisenberg, S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266, 1825918267.
141Jong, MC, Hofker, MH & Havekes, LM (1999) Role of apoCs in lipoprotein metabolism: functional differences between apoC1, apoC2, and apoC3. Arterioscler Thromb Vasc Biol 19, 472–484.
142Waterworth, DM, Hubacek, JA, Pitha, J, Kovar, J, Poledne, R, Humphries, SE & Talmud, PJ (2000) Plasma levels of remnant particles are determined in part by variation in the APOC3 gene insulin response element and the APOCI-APOE cluster. J Lipid Res 41, 1103–1109.
143Woo, SK & Kang, HS (2003) The apolipoprotein CIII T2854G variants are associated with postprandial triacylglycerol concentrations in normolipidemic Korean men. J Hum Genet 48, 551555.
144Beisiegel, U, Weber, W, Ihrke, G, Herz, J & Stanley, KK (1989) The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341, 162–164.
145Gylling, H, Hallikainen, M, Pihlajamaki, J, Agren, J, Laakso, M, Rajaratnam, RA, Rauramaa, R & Miettinen, TA (2004) Polymorphisms in the ABCG5 and ABCG8 genes associate with cholesterol absorption and insulin sensitivity. J Lipid Res 45, 16601665.
146Mahley, RW (1988) Apolipoprotein E:cholesterol transport protein with expanding role in cell biology. Science 240, 622630.
147Mahley, RW, Palaoglu, KE, Atak, Z, et al. (1995) Turkish Heart Study: lipids, lipoproteins, and apolipoproteins. J Lipid Res 36, 839–859.
148Weintraub, MS, Eisenberg, S & Breslow, JL (1987) Dietary fat clearance in normal subjects is regulated by genetic variation in apolipoprotein E. J Clin Invest 80, 15711577.
149Dart, A, Sherrard, B & Simpson, H (1997) Influence of apo E phenotype on postprandial triglyceride and glucose responses in subjects with and without coronary heart disease. Atherosclerosis 130, 161–170.
150Dallongeville, J, Tiret, L, Visvikis, S, et al. (1999) Effect of apo E phenotype on plasma postprandial triglyceride levels in young male adults with and without a familial history of myocardial infarction: the EARS II study. European Atherosclerosis Research Study. Atherosclerosis 145, 381–388.
151Cardona, F, Morcillo, S, Gonzalo-Marin, M & Tinahones, FJ (2005) The apolipoprotein E genotype predicts postprandial hypertriglyceridemia in patients with the metabolic syndrome. J Clin Endocrinol Metab 90, 29722975.
152Mui, S, Briggs, M, Chung, H, Wallace, RB, Gomez-Isla, T, Rebeck, GW & Hyman, BT (1996) A newly identified polymorphism in the apolipoprotein E enhancer gene region is associated with Alzheimer's disease and strongly with the epsilon 4 allele. Neurology 47, 196–201.
153Artiga, MJ, Bullido, MJ, Sastre, I, Recuero, M, Garcia, MA, Aldudo, J, Vazquez, J & Valdivieso, F (1998) Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Lett 421, 105–108.
154Boisfer, E, Lambert, G, Atger, V, et al. (1999) Overexpression of human apolipoprotein A-II in mice induces hypertriglyceridemia due to defective very low density lipoprotein hydrolysis. J Biol Chem 274, 1156411572.
155Viitanen, L, Pihlajamaki, J, Miettinen, R, Karkkainen, P, Vauhkonen, I, Halonen, P, Kareinen, A, Lehto, S & Laakso, M (2001) Apolipoprotein E gene promoter ( − 219G/T) polymorphism is associated with premature coronary heart disease. J Mol Med 79, 732737.
156Moreno, JA, Lopez-Miranda, J, Marin, C, et al. (2003) The influence of the apolipoprotein E gene promoter ( − 219G/ T) polymorphism on postprandial lipoprotein metabolism in young normolipemic males. J Lipid Res 44, 2059–2064.
157Matarese, V, Stone, RL, Waggoner, DW & Bernlohr, DA (1989) Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog Lipid Res 28, 245–272.
158Baier, LJ, Sacchettini, JC, Knowler, WC, et al. (1995) An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J Clin Invest 95, 1281–1287.
159Hegele, RA, Harris, SB, Hanley, AJ, Sadikian, S, Connelly, PW & Zinman, B (1996) Genetic variation of intestinal fatty acid-binding protein associated with variation in body mass in aboriginal Canadians. J Clin Endocrinol Metab 81, 43344337.
160Yamada, K, Yuan, X, Ishiyama, S, Koyama, K, Ichikawa, F, Koyanagi, A, Koyama, W & Nonaka, K (1997) Association between Ala54Thr substitution of the fatty acid-binding protein 2 gene with insulin resistance and intra-abdominal fat thickness in Japanese men. Diabetologia 40, 706–710.
161Agren, JJ, Valve, R, Vidgren, H, Laakso, M & Uusitupa, M (1998) Postprandial lipemic response is modified by the polymorphism at codon 54 of the fatty acid-binding protein 2 gene. Arterioscler Thromb Vasc Biol 18, 1606–1610.
162Georgopoulos, A, Aras, O & Tsai, MY (2000) Codon-54 polymorphism of the fatty acid-binding protein 2 gene is associated with elevation of fasting and postprandial triglyceride in type 2 diabetes. J Clin Endocrinol Metab 85, 31553160.
163Tahvanainen, E, Molin, M, Vainio, S, Tiret, L, Nicaud, V, Farinaro, E, Masana, L & Ehnholm, C (2000) Intestinal fatty acid binding protein polymorphism at codon 54 is not associated with postprandial responses to fat and glucose tolerance tests in healthy young Europeans. Results from EARS II participants. Atherosclerosis 152, 317–325.
164Dworatzek, PD, Hegele, RA & Wolever, TM (2004) Postprandial lipemia in subjects with the threonine 54 variant of the fatty acid-binding protein 2 gene is dependent on the type of fat ingested. Am J Clin Nutr 79, 1110–1117.
165Gertow, K, Skoglund-Andersson, C, Eriksson, P, Boquist, S, Orth-Gomer, K, Schenck-Gustafsson, K, Hamsten, A & Fisher, RM (2003) A common polymorphism in the fatty acid transport protein-1 gene associated with elevated post-prandial lipaemia and alterations in LDL particle size distribution. Atherosclerosis 167, 265–273.
166Beisiegel, U, Weber, W & Bengtsson-Olivecrona, G (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A 88, 83428346.
167Talmud, PJ, Hall, S, Holleran, S, Ramakrishnan, R, Ginsberg, HN & Humphries, SE (1998) LPL promoter − 93T/G transition influences fasting and postprandial plasma triglycerides response in African-Americans and Hispanics. J Lipid Res 39, 11891196.
168Fisher, RM, Humphries, SE & Talmud, PJ (1997) Common variation in the lipoprotein lipase gene: effects on plasma lipids and risk of atherosclerosis. Atherosclerosis 135, 145–159.
169Gerdes, C, Fisher, RM, Nicaud, V, Boer, J, Humphries, SE, Talmud, PJ & Faergeman, O (1997) Lipoprotein lipase variants D9N and N291S are associated with increased plasma triglyceride and lower high-density lipoprotein cholesterol concentrations: studies in the fasting and postprandial states: the European Atherosclerosis Research Studies. Circulation 96, 733–740.
170Mero, N, Suurinkeroinen, L, Syvanne, M, Knudsen, P, Yki-Jarvinen, H & Taskinen, MR (1999) Delayed clearance of postprandial large TAG-rich particles in normolipidemic carriers of LPL Asn291Ser gene variant. J Lipid Res 40, 16631670.
171Lopez-Miranda, J, Cruz, G, Gomez, P, Marin, C, Paz, E, Perez-Martinez, P, Fuentes, FJ, Ordovas, JM & Perez-Jimenez, F (2004) The influence of lipoprotein lipase gene variation on postprandial lipoprotein metabolism. J Clin Endocrinol Metab 89, 47214728.
172van't Hooft, FM, Lundahl, B, Ragogna, F, Karpe, F, Olivecrona, G & Hamsten, A (2000) Functional characterization of 4 polymorphisms in promoter region of hepatic lipase gene. Arterioscler Thromb Vasc Biol 20, 1335–1339.
173Jansen, H, Chu, G, Ehnholm, C, Dallongeville, J, Nicaud, V & Talmud, PJ (1999) The T allele of the hepatic lipase promoter variant C-480T is associated with increased fasting lipids and HDL and increased preprandial and postprandial LpCIII:B: European Atherosclerosis Research Study (EARS) II. Arterioscler Thromb Vasc Biol 19, 303–308.
174Gomez, P, Miranda, JL, Marin, C, Bellido, C, Moreno, JA, Moreno, R, Perez-Martinez, P & Perez-Jimenez, F (2004) Influence of the -514C/T polymorphism in the promoter of the hepatic lipase gene on postprandial lipoprotein metabolism. Atherosclerosis 174, 73–79.
175Karpe, F, Lundahl, B, Ehrenborg, E, Eriksson, P & Hamsten, A (1998) A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Arterioscler Thromb Vasc Biol 18, 756761.
176Lundahl, B, Hamsten, A & Karpe, F (2002) Postprandial plasma ApoB-48 levels are influenced by a polymorphism in the promoter of the microsomal triglyceride transfer protein gene. Arterioscler Thromb Vasc Biol 22, 289293.
177Hauser, H, Dyer, JH, Nandy, A, et al. (1998) Identification of a receptor mediating absorption of dietary cholesterol in the intestine. Biochemistry 37, 1784317850.
178Bietrix, F, Yan, D, Nauze, M, et al. (2006) Accelerated lipid absorption in mice overexpressing intestinal SR-BI. J Biol Chem 281, 72147219.
179Perez-Martinez, P, Lopez-Miranda, J, Ordovas, JM, et al. (2004) Postprandial lipemia is modified by the presence of the polymorphism present in the exon 1 variant at the SR-BI gene locus. J Mol Endocrinol 32, 237–245.
180Corella, D, Qi, L, Tai, ES, Deurenberg-Yap, M, Tan, CE, Chew, SK & Ordovas, JM (2006) Perilipin gene variation determines higher susceptibility to insulin resistance in Asian women when consuming a high-saturated fat, low-carbohydrate diet. Diabetes Care 29, 1313–1319.
181Phillips, C, Mullan, K, Owens, D & Tomkin, GH (2004) Microsomal triglyceride transfer protein polymorphisms and lipoprotein levels in type 2 diabetes. QJM 97, 211–218.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed