Skip to main content Accessibility help
×
×
Home

Favourable effects of the Dietary Approaches to Stop Hypertension diet on glucose tolerance and lipid profiles in gestational diabetes: a randomised clinical trial

  • Zatollah Asemi (a1), Zohreh Tabassi (a2), Mansooreh Samimi (a2), Taherh Fahiminejad (a2) and Ahmad Esmaillzadeh (a3) (a4)...

Abstract

Although gestational diabetes mellitus (GDM) is associated with an increased risk of maternal and neonatal morbidity, there is no consensus as to the optimal approach of nutritional management in these patients. The present study was designed to assess the effect of the Dietary Approaches to Stop Hypertension (DASH) eating plan on glucose tolerance and lipid profiles of pregnant women with GDM. The present randomised controlled clinical trial was performed among thirty-four women diagnosed with GDM at 24–28 weeks of gestation. Subjects were randomly assigned to consume either the control diet (n 17) or the DASH eating pattern (n 17) for 4 weeks. The control diet was designed to contain 45–55 % carbohydrates, 15–20 % protein and 25–30 % total fat. The macronutrient composition of the DASH diet was similar to the control diet; however, the DASH diet was rich in fruits, vegetables, whole grains and low-fat dairy products, and contained lower amounts of saturated fats, cholesterol and refined grains with a total of 2400 mg Na/d. Fasting blood samples were taken at baseline and after 4 weeks of intervention to measure fasting plasma glucose, glycated Hb (HbA1c) and lipid profiles. Participants underwent a 3 h oral glucose tolerance tests and blood samples were collected at 60, 120 and 180 min to measure plasma glucose levels. Adherence to the DASH eating pattern, compared with the control diet, resulted in improved glucose tolerance such that plasma glucose levels reduced at 60 ( − 1·86 v. − 0·45 mmol/l, Pgroup= 0·02), 120 ( − 2·3 v. 0·2 mmol/l, Pgroup= 0·001) and 180 min ( − 1·7 v. 0·22 mmol/l, Pgroup= 0·002) after the glucose load. Decreased HbA1c levels ( − 0·2 v. 0·05 %, Pgroup= 0·001) was also seen in the DASH group compared with the control group. Mean changes for serum total ( − 0·42 v. 0·31 mmol/l, Pgroup= 0·01) and LDL-cholesterol ( − 0·47 v. 0·22 mmol/l, Pgroup= 0·005), TAG ( − 0·17 v. 0·34 mmol/l, Pgroup= 0·01) and total:HDL-cholesterol ratio ( − 0·6 (sd 0·9) v. 0·3 (sd 0·8), Pgroup= 0·008) were significantly different between the two diets. Additionally, consumption of the DASH diet favourably influenced systolic blood pressure ( − 2·6 v. 1·7 mmHg, Pgroup= 0·001). Mean changes of fasting plasma glucose ( − 0·29 v. 0·15 mmol/l, Pgroup= 0·09) were non-significant comparing the DASH diet with the control diet. In conclusion, consumption of the DASH eating pattern for 4 weeks among pregnant women with GDM resulted in beneficial effects on glucose tolerance and lipid profiles compared with the control diet.

Copyright

Corresponding author

*Corresponding author: Dr A. Esmaillzadeh, fax +98 311 6682509, email esmaillzadeh@hlth.mui.ac.ir

References

Hide All
1Wang, Y, Nie, M, Li, W, et al. (2011) Association of six single nucleotide polymorphisms with gestational diabetes mellitus in a Chinese population. PLoS One 6, e26953.
2Shaat, N & Groop, L (2007) Genetics of gestational diabetes mellitus. Curr Med Chem 14, 569583.
3Metzger, BE, Buchanan, TA, Coustan, DR, et al. (2007) Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 30, Suppl. 2, S251S260.
4Bener, A, Saleh, NM & Al-Hamaq, A (2011) Prevalence of gestational diabetes and associated maternal and neonatal complications in a fast-developing community: global comparisons. Int J Womens Health 3, 367373.
5Gabbe, SG & Graves, CR (2003) Management of diabetes mellitus complicating pregnancy. Obstet Gynecol 102, 857868.
6Jelsema, RD (2004) Management of diabetes mellitus complicating pregnancy. Obstet Gynecol 103, 586(author reply 586–587).
7Yessoufou, A & Moutairou, K (2011) Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res 2011, 218598.
8Cox, NJ (1994) Maternal component in NIDDM transmission. How large an effect? Diabetes 43, 166168.
9Linne, Y, Barkeling, B & Rossner, S (2002) Natural course of gestational diabetes mellitus: long term follow up of women in the SPAWN study. BJOG 109, 12271231.
10Acheson, KJ (2010) Carbohydrate for weight and metabolic control: where do we stand? Nutrition 26, 141145.
11Lim, SS, Noakes, M & Norman, RJ (2007) Dietary effects on fertility treatment and pregnancy outcomes. Curr Opin Endocrinol Diabetes Obes 14, 465469.
12McGowan, CA & McAuliffe, FM (2010) The influence of maternal glycaemia and dietary glycaemic index on pregnancy outcome in healthy mothers. Br J Nutr 104, 153159.
13Moses, RG, Barker, M, Winter, M, et al. (2009) Can a low-glycemic index diet reduce the need for insulin in gestational diabetes mellitus? A randomized trial. Diabetes Care 32, 9961000.
14Vollmer, WM, Sacks, FM, Ard, J, et al. (2001) Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med 135, 10191028.
15Azadbakht, L, Fard, NR, Karimi, M, et al. (2011) Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial. Diabetes Care 34, 5557.
16Azadbakht, L, Mirmiran, P, Esmaillzadeh, A, et al. (2005) Beneficial effects of a Dietary Approaches to Stop Hypertension eating plan on features of the metabolic syndrome. Diabetes Care 28, 28232831.
17Jehan, I, Zaidi, S, Rizvi, S, et al. (2010) Dating gestational age by last menstrual period, symphysis-fundal height, and ultrasound in urban Pakistan. Int J Gynaecol Obstet 110, 231234.
18Rossi, G (2010) Diagnosis and classification of diabetes mellitus. Recenti Prog Med 101, 274276.
19Champagne, CM (2008) Magnesium in hypertension, cardiovascular disease, metabolic syndrome, and other conditions: a review. Nutr Clin Pract 23, 142151.
20Doyle, L & Cashman, KD (2003) The effect of nutrient profiles of the Dietary Approaches to Stop Hypertension (DASH) diets on blood pressure and bone metabolism and composition in normotensive and hypertensive rats. Br J Nutr 89, 713724.
21Harsha, DW, Sacks, FM, Obarzanek, E, et al. (2004) Effect of dietary sodium intake on blood lipids: results from the DASH-sodium trial. Hypertension 43, 393398.
22Obarzanek, E, Sacks, FM, Vollmer, WM, et al. (2001) Effects on blood lipids of a blood pressure-lowering diet: the Dietary Approaches to Stop Hypertension (DASH) Trial. Am J Clin Nutr 74, 8089.
23Sacks, FM & Katan, M (2002) Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med 113, Suppl. 9B, 13S24S.
24Macan, M, Vrkic, N, Vrdoljak, AL, et al. (2010) Effects of high sucrose diet, gemfibrozil, and their combination on plasma paraoxonase 1 activity and lipid levels in rats. Acta Biochim Pol 57, 321326.
25Shikany, JM, Phadke, RP, Redden, DT, et al. (2009) Effects of low- and high-glycemic index/glycemic load diets on coronary heart disease risk factors in overweight/obese men. Metabolism 58, 17931801.
26Man, Q & He, L (2009) Effects of high-sugar and high-fat diet on growth and carbohydrate, lipid metabolism in Wistar rats. Wei Sheng Yan Jiu 38, 722724.
27Scholl, TO, Chen, X, Khoo, CS, et al. (2004) The dietary glycemic index during pregnancy: influence on infant birth weight, fetal growth, and biomarkers of carbohydrate metabolism. Am J Epidemiol 159, 467474.
28Romon, M, Nuttens, MC, Vambergue, A, et al. (2001) Higher carbohydrate intake is associated with decreased incidence of newborn macrosomia in women with gestational diabetes. J Am Diet Assoc 101, 897902.
29Van Horn, L (1997) Fiber, lipids, and coronary heart disease. A statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation 95, 27012704.
30Brown, L, Rosner, B, Willett, WW, et al. (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69, 3042.
31Esmaillzadeh, A & Azadbakht, L (2012) Legume consumption is inversely associated with serum concentrations of adhesion molecules and inflammatory biomarkers among Iranian women. J Nutr 142, 334339.
32Azadbakht, L, Shakerhosseini, R, Atabak, S, et al. (2003) Beneficiary effect of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type II diabetes with nephropathy. Eur J Clin Nutr 57, 12921294.
33Hermansen, K, Hansen, B, Jacobsen, R, et al. (2005) Effects of soy supplementation on blood lipids and arterial function in hypercholesterolaemic subjects. Eur J Clin Nutr 59, 843850.
34Sudhakar, B, Kalaiarasi, P, Al-Numair, KS, et al. (2011) Effect of combination of edible oils on blood pressure, lipid profile, lipid peroxidative markers, antioxidant status, and electrolytes in patients with hypertension on nifedipine treatment. Saudi Med J 32, 379385.
35Esmaillzadeh, A & Azadbakht, L (2011) Different kinds of vegetable oils in relation to individual cardiovascular risk factors among Iranian women. Br J Nutr 105, 919927.
36Alderman, MH & Cohen, HW (2012) Dietary sodium intake and cardiovascular mortality: controversy resolved? Curr Hypertens Rep 14, 193201.
37Gonzalez, SA, Forcada, P, de Cavanagh, EM, et al. (2012) Sodium intake is associated with parasympathetic tone and metabolic parameters in mild hypertension. Am J Hypertens 25, 620624.
38Huan, Y, Deloach, S, Keith, SW, et al. (2012) Aldosterone and aldosterone: renin ratio associations with insulin resistance and blood pressure in African Americans. J Am Soc Hypertens 6, 5665.
39Dziwura, J, Binczak-Kuleta, A, Miazgowski, T, et al. (2011) The associations between G972R polymorphism of the IRS-1 gene, insulin resistance, salt sensitivity and non-dipper hypertension. Hypertens Res 34, 10821086.
40Lastra, G, Dhuper, S, Johnson, MS, et al. (2010) Salt, aldosterone, and insulin resistance: impact on the cardiovascular system. Nat Rev Cardiol 7, 577584.
41Ishikawa, M, Arai, S, Takano, M, et al. (2010) Taurine's health influence on Japanese high school girls. J Biomed Sci 17, Suppl. 1, S47.
42Reungjui, S, Pratipanawatr, T, Johnson, RJ, et al. (2008) Do thiazides worsen metabolic syndrome and renal disease? The pivotal roles for hyperuricemia and hypokalemia. Curr Opin Nephrol Hypertens 17, 470476.
43Ando, K, Matsui, H, Fujita, M, et al. (2010) Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action. Curr Vasc Pharmacol 8, 5963.
44Bo, S & Pisu, E (2008) Role of dietary magnesium in cardiovascular disease prevention, insulin sensitivity and diabetes. Curr Opin Lipidol 19, 5056.
45Reid, IR (2004) Effects of calcium supplementation on circulating lipids: potential pharmacoeconomic implications. Drugs Aging 21, 717.
46Vaskonen, T (2003) Dietary minerals and modification of cardiovascular risk factors. J Nutr Biochem 14, 492506.
47Cho, HJ, Kang, HC, Choi, SA, et al. (2005) The possible role of Ca2+' on the activation of microsomal triglyceride transfer protein in rat hepatocytes. Biol Pharm Bull 28, 14181423.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed