Skip to main content Accessibility help
×
×
Home

Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation

  • Christine Henriksen (a1), Ane C. Westerberg (a1), Arild Rønnestad (a2), Britt Nakstad (a3), Marit B. Veierød (a1) (a4), Christian A. Drevon (a1) and Per O. Iversen (a1) (a5)...
Abstract

Postnatal growth failure in preterm infants is due to interactions between genetic and environmental factors, which are not fully understood. We assessed dietary supply of nutrients in very-low-birth-weight (VLBW, < 1500 g) infants fed fortified human milk, and examined the association between nutrient intake, medical factors and growth during hospitalisation lasting on average 70 d. We studied 127 VLBW infants during the early neonatal period. Data were obtained from medical records on nutrient intake, growth and growth-related factors. Extra-uterine growth restriction was defined as body weight < 10th percentile of the predicted value at discharge. Using logistic regression, we evaluated nutrient intake and other relevant factors associated with extra-uterine growth restriction in the subgroup of VLBW infants with adequate weight for gestational age at birth. The proportion of growth restriction was 33 % at birth and increased to 58 % at discharge from hospital. Recommended values for energy intake (>500 kJ/kg per d) and intra-uterine growth rate (15 g/kg per d) were not met, neither in the period from birth to 28 weeks post-conceptional age (PCA), nor from 37 weeks PCA to discharge. Factors negatively associated with growth restriction were energy intake (Ptrend = 0·002), non-Caucasian ethnicity (P = 0·04) and weight/predicted birth weight at birth (Ptrend = 0·004). Extra-uterine growth restriction is common in VLBW infants fed primarily fortified human milk. Currently recommended energy and nutrient intake for growing preterm infants was not achieved. Reduced energy supply and non-Caucasian ethnicity were risk factors for growth restriction at discharge from hospital.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Christine Henriksen, fax +47 22 85 1341, email christine.henriksen@medisin.uio.no
References
Hide All
1Dewey, K & Lutter, C (2006) Guiding Priniciples for Complementary Feeding of the Breastfed Child. Washington, DC: WHO Division of Health Promotion and Protection. Food and Nutrition Program.
2Parish, A & Bhatia, J (2008) Early aggressive nutrition for the premature infant. Neonatology 94, 211214.
3National Board of Health (2002), Best Practice on Milkbanks in Norway, IK-2760. Oslo: National Board of Health.
4Lucas, A, Morley, R, Cole, TJ, et al. (1992) Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339, 261264.
5Ronnestad, A, Abrahamsen, TG, Medbo, S, et al. (2005) Late-onset septicemia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics 115, e269e276.
6Heiman, H & Schanler, RJ (2006) Benefits of maternal and donor human milk for premature infants. Early Hum Dev 82, 781787.
7O'Connor, DL, Jacobs, J, Hall, R, et al. (2003) Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J Pediatr Gastroenterol Nutr 37, 437446.
8Kuschel, CA & Harding, JE (2004) Multicomponent fortified human milk for promoting growth in preterm infants. The Cochrane Database of Systematic Reviews 2004, issue 1, CD000343.http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD000343/frame.html.
9Rotteveel, J, van Weissenbruch, MM, Twisk, JW, et al. (2008) Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics 122, 313321.
10American Academy of Pediatrics (1998) Pediatric Nutrition Handbook, 4th ed. [Kleinman, RE, editor]. Elk Grove Village, IL: American Academy of Pediatrics.
11Fewtrell, MS (2003) Growth and nutrition after discharge. Semin Neonatol 8, 169176.
12Henriksen, C, Haugholt, K, Lindgren, M, et al. (2008) Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics 121, 11371145.
13Skjaerven, R, Gjessing, HK & Bakketeig, LS (2000) Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand 79, 440449.
14Saarela, T, Kokkonen, J & Koivisto, M (2005) Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr 94, 11761181.
15Willett, W (1998) Nutritional Epidemiology, 2nd ed.New York: Oxford University Press.
16Ehrenkranz, RA, Younes, N, Lemons, JA, et al. (1999) Longitudinal growth of hospitalized very low birth weight infants. Pediatrics 104, 280289.
17Lemons, JA, Bauer, CR, Oh, W, et al. (2001) Very low birth weight outcomes of the National Institute of Child Health and Human Development Neonatal Research Network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107, E1.
18Clark, RH, Thomas, P & Peabody, J (2003) Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics 111, 986990.
19Fenton, TR (2003) A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatr 3, 13.
20Menon, G, Boyle, EM, Embleton, ND, et al. (2004) Introduction of enteral feeds in preterm infants. Pediatrics 114, 327328.
21Embleton, NE, Pang, N & Cooke, RJ (2001) Postnatal malnutrition and growth retardation: an inevitable consequence of current recommendations in preterm infants? Pediatrics 107, 270273.
22De, CM & Rigo, J (2004) Extrauterine growth restriction in very-low-birthweight infants. Acta Paediatr 93, 15631568.
23Berry, MA, Abrahamowicz, M & Usher, RH (1997) Factors associated with growth of extremely premature infants during initial hospitalization. Pediatrics 100, 640646.
24Lucas, A, Morley, R & Cole, TJ (1998) Randomised trial of early diet in preterm babies and later intelligence quotient. BMJ 317, 14811487.
25Black, LS, deRegnier, RA, Long, J, et al. (2004) Electrographic imaging of recognition memory in 34–38 week gestation intrauterine growth restricted newborns. Exp Neurol 190, Suppl. 1, S72S83.
26Mallard, C, Loeliger, M, Copolov, D, et al. (2000) Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 100, 327333.
27Brandt, I, Sticker, EJ & Lentze, MJ (2003) Catch-up growth of head circumference of very low birth weight, small for gestational age preterm infants and mental development to adulthood. J Pediatr 142, 463468.
28Barker, DJ, Winter, PD, Osmond, C, et al. (1989) Weight in infancy and death from ischaemic heart disease. Lancet ii, 577580.
29Singhal, A, Cole, TJ, Fewtrell, M, et al. (2004) Is slower early growth beneficial for long-term cardiovascular health? Circulation 109, 11081113.
30Singhal, A, Farooqi, IS, O'Rahilly, S, et al. (2002) Early nutrition and leptin concentrations in later life. Am J Clin Nutr 75, 993999.
31Singhal, A, Fewtrell, M, Cole, TJ, et al. (2003) Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet 361, 10891097.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed