Skip to main content Accessibility help
×
Home

Intervention effects on dietary intake among children by maternal education level: results of the Copenhagen School Child Intervention Study (CoSCIS)

  • Britt W. Jensen (a1) (a2) (a3), Lene M. von Kappelgaard (a4), Birgit M. Nielsen (a5), Ida Husby (a6), Anna Bugge (a2), Bianca El-Naaman (a2), Lars B. Andersen (a2) (a7), Ellen Trolle (a8) and Berit L. Heitmann (a1) (a3) (a9)...

Abstract

Dietary intake among Danish children, in general, does not comply with the official recommendations. The objectives of the present study were to evaluate the 3-year effect of a multi-component school-based intervention on nutrient intake in children, and to examine whether an intervention effect depended on maternal education level. A total of 307 children (intervention group: n 184; comparison group: n 123) were included in the present study. All had information on dietary intake pre- and post-intervention (mean age 6·8 and 9·5 years for intervention and comparison groups, respectively) assessed by a 7-d food record. Analyses were conducted based on the daily intake of macronutrients (energy percentage (E%)), fatty acids (E%), added sugar (E%) and dietary fibre (g/d and g/MJ). Analyses were stratified by maternal education level into three categories. Changes in nutrient intake were observed in the intervention group, mainly among children of mothers with a short education ( < 10 years). Here, intake of dietary fibre increased (β = 2·1 g/d, 95 % CI 0·5, 3·6, P= 0·01). Intake of protein tended to increase (β = 0·6 E%, 95 % CI − 0·01, 1·2, P= 0·05), while intake of fat (β = − 1·7 E%, 95 % CI − 3·8, 0·3, P= 0·09) and SFA (β = − 0·9, 95 % CI − 2·0, 0·2, P= 0·10) tended to decrease. Also, a significant intervention effect was observed on the intake of SFA among children of mothers with a long education (β = − 0·8, 95 % CI − 1·5, − 0·03, P= 0·04). This multi-component school-based intervention resulted in changes in the dietary intake, particularly among children of mothers with a short education. As the dietary intake of this subgroup generally differs most from the recommendations, the results of the present study are particularly encouraging.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intervention effects on dietary intake among children by maternal education level: results of the Copenhagen School Child Intervention Study (CoSCIS)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intervention effects on dietary intake among children by maternal education level: results of the Copenhagen School Child Intervention Study (CoSCIS)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intervention effects on dietary intake among children by maternal education level: results of the Copenhagen School Child Intervention Study (CoSCIS)
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: B. W. Jensen, fax +45 38163119, email britt.wang.jensen@regionh.dk

References

Hide All
1 Ebbeling, CB, Pawlak, DB & Ludwig, DS (2002) Childhood obesity: public-health crisis, common sense cure. Lancet 360, 473482.
2 Reilly, JJ (2005) Descriptive epidemiology and health consequences of childhood obesity. Best Pract Res Clin Endocrinol Metab 19, 327341.
3 Mølgaard, C, Dela, F, Froberg, K, et al. (2007) Forebyggelse af overvægt blandt børn og unge - oplæg til strategi (Prevention of Obesity among Children and Adolescents-proposal for a Strategy). Denmark: The Danish Nutritional and Physical Activity Council.
4 Shrewsbury, V & Wardle, J (2008) Socioeconomic status and adiposity in childhood: a systematic review of cross-sectional studies 1990–2005. Obesity (Silver Spring) 16, 275284.
5 Nordic Council of Ministers (2004) Nordic Nutritional Recommendations – Integrating Nutrition and Physical Activity, 4th ed. Copenhagen: Nordic Council of Ministers.
6 Pedersen, AN, Fagt, S, Groth, MV, et al. (2010) Danskernes kostvaner 2003–2008 – Hovedresultater (Dietary Habits in Denmark 2003–2008 – Main Results). Søborg: National Food Institute, Technical University of Denmark.
7 World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Disease. Report of a Joint WHO/FAO Expert Consultation no. 916 . Geneva: World Health Organization.
8 Cribb, VL, Jones, LR, Rogers, IS, et al. (2011) Is maternal education level associated with diet in 10-year-old children? Public Health Nutr 14, 20372048.
9 Han, E & Powell, LM (2013) Consumption patterns of sugar-sweetened beverages in the United States. J Acad Nutr Diet 113, 4353.
10 Jones, LR, Steer, CD, Rogers, IS, et al. (2010) Influences on child fruit and vegetable intake: sociodemographic, parental and child factors in a longitudinal cohort study. Public Health Nutr 13, 11221130.
11 Øverby, NC & Andersen, LF (2002) Ungkost-2000, Landsomfattende kostholdsundersøkelse blant elever i 4.-og 8. klasse i Norge (Youth Diet-2000, A National Dietary Survey among Students from 4th and 8th Grade in Norway). Oslo: The Norwegian Directorate of Health, Department for Nutrition.
12 Stea, TH, Overby, NC, Klepp, KI, et al. (2012) Changes in beverage consumption in Norwegian children from 2001 to 2008. Public Health Nutr 15, 379385.
13 Rasmussen, M & Due, P (editors) (2011) Skolebørnsundersøgelsen 2010 The School Children Study 2010. Copenhagen: National Institute of Public Health, University of Southern Denmark.
14 Groth, MV, Christensen, LM, Knudsen, VK, et al. (2013) Sociale forskelle, børns kostvaner, fysisk aktivitet og overvægt, og voksnes kostvaner (Social Differences in Children's Dietary Habits, Physical Activity an Overweight and Adult's Dietary Habits). Søborg: National Food Institute, Technical University of Denmark.
15 Wechsler, H, Devereaux, RS, Margarett, D, et al. (2000) Using the school environment to promote physical activity and healthy eating. Prev Med 31, s121s137.
16 Van Cauwenberghe, E, Maes, L, Spittaels, H, et al. (2010) Effectiveness of school-based interventions in Europe to promote healthy nutrition in children and adolescents: systematic review of published and ‘grey’ literature. Br J Nutr 103, 781797.
17 Hasselstrom, HA, Karlsson, MK, Hansen, SE, et al. (2008) A 3-year physical activity intervention program increases the gain in bone mineral and bone width in prepubertal girls but not boys: the prospective Copenhagen School Child Interventions Study (CoSCIS). Calcif Tissue Int 83, 243250.
18 Andersen, LB & Froberg, K (2006) Sundhedsmæssige aspekter af fysisk aktivitet hos børn – et treårigt forsøg i to kommuner ved København: Ballerup og Tårnby (Health Related Aspects of Physical Activity in Children – A Three Year Study in Two Copenhagen Municipalities: Ballerup and Tårnby). Copenhagen: Danish Health and Medicines Authority.
19 Husby, I (2008) Børns mad, mellemåltider og hovedmåltider – i et folkesundhedsperspektiv (Children's food, snacks and meals – in a public health perspective). Ph.D thesis, Faculty of Health Science, University of Copenhagen.
20 van Vught, AJ, Heitmann, BL, Nieuwenhuizen, AG, et al. (2010) Association between intake of dietary protein and 3-year-change in body growth among normal and overweight 6-year-old boys and girls (CoSCIS). Public Health Nutr 13, 647653.
21 Fagt, S, Biltoft-Jensen, A, Matthiessen, J, et al. (2008) Danskernes kostvaner 1995–2006. Status og udvikling med fokus på frugt og grønt samt sukker (Dietary Habits of Denmark 1995–2006. Status and Development with Focus on Fruits, Vegetables and Added Sugar). Søborg: National Food Institute, Technical University of Denmark.
22 Fagt, S, Matthiessen, J, Biltoft-Jensen, A, et al. (2004) Udviklingen i danskernes kost 1985–2001. Med fokus på sukker og alkohol samt motivation og barrierer for sund livsstil (The Development of the Danes’ Diet 1985–2001. Focusing on Sugar and Alcohol and Motivation and Barriers for Healthy Lifestyle). Søborg: Danish Food and Veterinary Research Danmarks, Department for Nutrition.
23 Larsen, BL (1994) Objektiv validering af kostdagbog til brug ved nationale kostundersøgelser (Objective Validation of Food Diaries Used a National Dietary Surveys). Copenhagen: Institute of Human Nutrition, The Royal Veterinary and Agricultural University.
24 Trolle, E, Amiano, P, Ege, M, et al. (2011) Evaluation of 2 × 24-h dietary recalls combined with a food-recording booklet, against a 7-day food-record method among schoolchildren. Eur J Clin Nutr 65, Suppl. 1, S77S83.
25 Rothausen, BW, Matthiessen, J, Groth, MV, et al. (2012) Comparison of estimated energy intake from 2 × 24-hour recalls and a seven-day food record with objective measurements of energy expenditure in children. Food Nutr Res 56, .
26 Saxholt, E, Christensen, AT, Møller, A, et al. (2008) Fødevaredatabanken, version 7 (The Food Composition Table, Version 7). Søborg: National Food Institute, Technical University of Denmark.
27 DTU Food (2009) Danish Food Composition Databank – ed.7.01. http://www.foodcomp.dk/v7/fvdb_search.asp (accessed accessed August 2011).
28 Eiberg, S, Hasselstrom, HA, Gronfeldt, V, et al. (2005) Maximum oxygen uptake and objectively measured physical activity in Danish children 6–7 years of age: the Copenhagen School Child Intervention Study. Br J Sports Med 39, 725730.
29 Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
30 Schofield, WN (1985) Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr 39, Suppl. 1, 541.
31 Jensen, BW, Nielsen, BM, Husby, I, et al. (2013) Association between sweet drink intake and adiposity in Danish children participating in a long-term intervention study. Pediatr Obes 8, 259270.
32 Bugge, A, El-Naaman, B, Dencker, M, et al. (2012) Effects of a 3-year intervention: The Copenhagen School Child Intervention Study. Med Sci Sports Exerc 44, 13101317.
33 Moreira, P, Santos, S, Padrao, P, et al. (2010) Food patterns according to sociodemographics, physical activity, sleeping and obesity in Portuguese children. Int J Environ Res Public Health 7, 11211138.
34 Northstone, K & Emmett, P (2005) Multivariate analysis of diet in children at four and seven years of age and associations with socio-demographic characteristics. Eur J Clin Nutr 59, 751760.
35 Vereecken, CA, Keukelier, E & Maes, L (2004) Influence of mother's educational level on food parenting practices and food habits of young children. Appetite 43, 93103.
36 Rogers, I & Emmett, P (2003) The effect of maternal smoking status, educational level and age on food and nutrient intakes in preschool children: results from the Avon Longitudinal Study of Parents and Children. Eur J Clin Nutr 57, 854864.
37 Dupont, WD & Plummer, J (1990) Power and sample size calculations: a review and computer program. Control Clin Trials 11, 116128.
38 Dupont, WD & Plummer, J (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19, 589601.
39 Caballero, B, Clay, T, Davis, SM, et al. (2003) Pathways: a school-based, randomized controlled trial for the prevention of obesity in American Indian schoolchildren. Am J Clin Nutr 78, 10301038.
40 Gortmaker, SL, Cheung, LW, Peterson, KE, et al. (1999) Impact of a school-based interdisciplinary intervention on diet and physical activity among urban primary school children: eat well and keep moving. Arch Pediatr Adolesc Med 153, 975983.
41 Gortmaker, SL, Peterson, K, Wiecha, J, et al. (1999) Reducing obesity via a school-based interdisciplinary intervention among youth: Planet Health. Arch Pediatr Adolesc Med 153, 409418.
42 Haerens, L, Deforche, B, Maes, L, et al. (2006) Evaluation of a 2-year physical activity and healthy eating intervention in middle school children. Health Educ Res 21, 911921.
43 Kristjansdottir, AG, Johannsson, E & Thorsdottir, I (2010) Effects of a school-based intervention on adherence of 7–9-year-olds to food-based dietary guidelines and intake of nutrients. Public Health Nutr 13, 11511161.
44 Luepker, RV, Perry, CL, McKinlay, SM, et al. (1996) Outcomes of a field trial to improve children's dietary patterns and physical activity. The Child and Adolescent Trial for Cardiovascular Health. CATCH collaborative group. JAMA 275, 768776.
45 Manios, Y & Kafatos, A (1999) Health and nutrition education in elementary schools: changes in health knowledge, nutrient intakes and physical activity over a six year period. Public Health Nutr 2, 445448.
46 Vandongen, R, Jenner, DA, Thompson, C, et al. (1995) A controlled evaluation of a fitness and nutrition intervention program on cardiovascular health in 10- to 12-year-old children. Prev Med 24, 922.
47 Livingstone, MB, Robson, PJ & Wallace, JM (2004) Issues in dietary intake assessment of children and adolescents. Br J Nutr 92, Suppl. 2, S213S222.
48 Magarey, A, Watson, J, Golley, RK, et al. (2010) Assessing dietary intake in children and adolescents: considerations and recommendations for obesity research. Int J Pediatr Obes 6, 211.
49 Livingstone, MB & Robson, PJ (2000) Measurement of dietary intake in children. Proc Nutr Soc 59, 279293.
50 Fagt, S, Christensen, T, Groth, MV, et al. (2007) Børn og unges måltidsvaner 2000–2004 (Eating Habits among Children and Adolescents 2000–2004). Søborg: National Food Institute, Technical University of Denmark.
51 Feise, RJ (2002) Do multiple outcome measures require P-value adjustment? BMC Med Res Methodol 2, 8.
52 Bland, JM & Altman, DG (1995) Multiple significance tests: the Bonferroni method. BMJ 310, 170.
53 Bender, R & Lange, S (2001) Adjusting for multiple testing-when and how? J Clin Epidemiol 54, 343349.
54 Sainani, KL (2009) The problem of multiple testing. PM R 1, 10981103.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed