Skip to main content Accessibility help
×
Home

Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads

  • Monica H. Carlsen (a1), Anette Karlsen (a1), Inger T. L. Lillegaard (a1), Jon M. Gran (a2), Christian A. Drevon (a1), Rune Blomhoff (a1) and Lene F. Andersen (a1)...

Abstract

The aim of the present study was to validate the intakes of fruit, juice and vegetables from an FFQ. In sub-study I (n 147), intakes from the FFQ were evaluated against 7 d weighed food records (WR) and plasma carotenoid concentrations, whereas in sub-study II (n 85), the intakes were evaluated against plasma carotenoid concentrations and amounts of flavonoids in 24 h urine samples. Relative validity was evaluated by comparing median intakes, estimating correlation coefficients and validity coefficients using the method of triads. In sub-study I, we observed no significant difference in daily median fruit intake between the FFQ and the WR, whereas the intake of vegetables was higher from the FFQ than from the WR. The correlations between intakes from the FFQ and the WR ranged from 0·31 to 0·58. In sub-study II, the intakes of fruit and vegetables correlated significantly with plasma carotenoid concentrations and urinary flavonoids. The validity coefficients for the intakes of fruit and vegetables from the FFQ ranged from 0·61 to 0·88 in sub-study I and from 0·60 to 0·94 in sub-study II. In summary, based on the associations observed between intakes from the FFQ and the biomarkers and the FFQ validity coefficients, the FFQ was found valid and suitable for ranking individuals according to their usual intake of fruit, juice and vegetables.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relative validity of fruit and vegetable intake estimated from an FFQ, using carotenoid and flavonoid biomarkers and the method of triads
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: M. H. Carlsen, fax +47 22851398, email m.h.carlsen@medisin.uio.no

References

Hide All
1 Andersen, LF, Jacobs, DR Jr, Carlsen, MH, et al. (2006) Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women's Health Study. Am J Clin Nutr 83, 10391046.
2 Blomhoff, R, Carlsen, MH, Andersen, LF, et al. (2006) Health benefits of nuts: potential role of antioxidants. Br J Nutr 96, Suppl. 2, S52S60.
3 Jacobs, DR Jr, Andersen, LF & Blomhoff, R (2007) Whole-grain consumption is associated with a reduced risk of noncardiovascular, noncancer death attributed to inflammatory diseases in the Iowa Women's Health Study. Am J Clin Nutr 85, 16061614.
4 Joshipura, KJ, Hu, FB, Manson, JE, et al. (2001) The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med 134, 11061114.
5 Joshipura, KJ, Ascherio, A, Manson, JE, et al. (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282, 12331239.
6 Karlsen, A, Retterstol, L, Laake, P, et al. (2007) Anthocyanins inhibit nuclear factor-kappaB activation in monocytes and reduce plasma concentrations of pro-inflammatory mediators in healthy adults. J Nutr 137, 19511954.
7 Malik, A, Afaq, F, Sarfaraz, S, et al. (2005) Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proc Natl Acad Sci U S A 102, 14 81314 818.
8 World Cancer Research Fund & American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective. Washington, DC: AICR.
9 Wright, ME, Mayne, ST, Swanson, CA, et al. (2003) Dietary carotenoids, vegetables, and lung cancer risk in women: the Missouri women's health study (United States). Cancer Causes Control 14, 8596.
10 Cabrera, C, Artacho, R & Gimenez, R (2006) Beneficial effects of green tea – a review. J Am Coll Nutr 25, 7999.
11 Cooper, KA, Donovan, JL, Waterhouse, AL, et al. (2008) Cocoa and health: a decade of research. Br J Nutr 99, 111.
12 deKok, TM, van Breda, SG & Manson, MM (2008) Mechanisms of combined action of different chemopreventive dietary compounds. Eur J Nutr 47, 5159.
13 Wang, L-S & Stoner, GD (2008) Anthocyanins and their role in cancer prevention. Cancer Lett 269, 281290.
14 Willett, W (1998) Nutritional Epidemiology, 2nd ed. Oxford: Oxford University Press.
15 Ocke, MC & Kaaks, RJ (1997) Biochemical markers as additional measurements in dietary validity studies: application of the method of triads with examples from the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 65, 1240S1245S.
16 Jenab, M, Slimani, N, Bictash, M, et al. (2009) Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 125, 507525.
17 Andersen, LF, Veierod, MB, Johansson, L, et al. (2005) Evaluation of three dietary assessment methods and serum biomarkers as measures of fruit and vegetable intake, using the method of triads. Br J Nutr 93, 519527.
18 Brevik, A, Rasmussen, SE, Drevon, CA, et al. (2004) Urinary excretion of flavonoids reflects even small changes in the dietary intake of fruits and vegetables. Cancer Epidemiol Biomarkers Prev 13, 843849.
19 Brevik, A, Andersen, LF, Karlsen, A, et al. (2004) Six carotenoids in plasma used to assess recommended intake of fruits and vegetables in a controlled feeding study. Eur J Clin Nutr 58, 11661173.
20 Krogholm, KS, Haraldsdottir, J, Knuthsen, P, et al. (2004) Urinary total flavonoid excretion but not 4-pyridoxic acid or potassium can be used as a biomarker for the intake of fruits and vegetables. J Nutr 134, 445451.
21 Jansen, MC, Van Kappel, AL, Ocke, MC, et al. (2004) Plasma carotenoid levels in Dutch men and women, and the relation with vegetable and fruit consumption. Eur J Clin Nutr 58, 13861395.
22 Nielsen, SE, Freese, R, Kleemola, P, et al. (2002) Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol Biomarkers Prev 11, 459466.
23 Campbell, DR, Gross, MD, Martini, MC, et al. (1994) Plasma carotenoids as biomarkers of vegetable and fruit intake. Cancer Epidemiol Biomarkers Prev 3, 493500.
24 Ito, H, Gonthier, MP, Manach, C, et al. (2005) Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br J Nutr 94, 500509.
25 Mennen, LI, Sapinho, D, Ito, H, et al. (2006) Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br J Nutr 96, 191198.
26 Mennen, LI, Sapinho, D, Ito, H, et al. (2008) Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects – variability and possible use as biomarkers of polyphenol intake. Eur J Clin Nutr 62, 519525.
27 Maiani, G, Caston, MJP, Catasta, G, et al. (2009) Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 53, s194s218.
28 Al-Delaimy, WK, Slimani, N, Ferrari, P, et al. (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: ecological-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr 59, 13971408.
29 Kaaks, RJ (1997) Biochemical markers as additional measurements in studies of the accuracy of dietary questionnaire measurements: conceptual issues. Am J Clin Nutr 65, 1232S1239S.
30 Carlsen, MH, Lillegaard, IT, Karlsen, A, et al. (2010) Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent expenditure measurement and weighed food records. Nutr J 9, 37.
31 Solvoll, K (2000) Development, evaluation and application of a quantitative food frequency questionnaire for assessment of dietary habits. Thesis, University of Oslo.
32 Johansson, L & Solvoll, K (1999) Norkost 1997, Landsomfattende kostholdundersøkelse blant menn og kvinner i alderen 16–79 år. no. 2 (Nationwide Dietary Survey Among Men and Women Aged 16–79 Years). Oslo: Statens råd for ernæring sog fysisk aktivitet.
33 Nes, M, Andersen, LF, Solvoll, K, et al. (1992) Accuracy of a quantitative food frequency questionnaire applied in elderly Norwegian women. Eur J Clin Nutr 46, 809821.
34 Andersen, LF, Tomten, H, Haggarty, P, et al. (2003) Validation of energy intake estimated from a food frequency questionnaire: a doubly labelled water study. Eur J Clin Nutr 57, 279284.
35 Andersen, LF, Solvoll, K, Johansson, LR, et al. (1999) Evaluation of a food frequency questionnaire with weighed records, fatty acids, and alpha-tocopherol in adipose tissue and serum. Am J Epidemiol 150, 7587.
36 Carlsen, MH, Halvorsen, BL, Holte, K, et al. (2010) The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr J 9, 3.
37 Bingham, S & Cummings, JH (1983) The use of 4-aminobenzoic acid as a marker to validate the completeness of 24 h urine collections in man. Clin Sci (Lond) 64, 629635.
38 Bingham, SA, Cassidy, A, Cole, TJ, et al. (1995) Validation of weighed records and other methods of dietary assessment using the 24 h urine nitrogen technique and other biological markers. Br J Nutr 73, 531550.
39 Jakobsen, J, Pedersen, AN & Ovesen, L (2003) Para-aminobenzoic acid (PABA) used as a marker for completeness of 24 hour urine: effects of age and dosage scheduling. Eur J Clin Nutr 57, 138142.
40 Nielsen, SE, Freese, R, Cornett, C, et al. (2000) Identification and quantification of flavonoids in human urine samples by column-switching liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry. Anal Chem 72, 15031509.
41 Field, A (2009) Discovering Statistics Using SPSS, 3rd ed. London: SAGE Publications Ltd.
42 Daures, JP, Gerber, M, Scali, J, et al. (2000) Validation of a food-frequency questionnaire using multiple-day records and biochemical markers: application of the triads method. J Epidemiol Biostat 5, 109115.
43 Efron, B & Tibshirani, RJ (1993) An Introduction to the Bootstrap. Boca Raton, FL: Chapman & Hall/CRC.
44 Brantsaeter, AL, Haugen, M, Rasmussen, SE, et al. (2007) Urine flavonoids and plasma carotenoids in the validation of fruit, vegetable and tea intake during pregnancy in the Norwegian Mother and Child Cohort Study (MoBa). Public Health Nutr 10, 838847.
45 Development Core Team (2008) R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
46 Cade, J, Thompson, R, Burley, V, et al. (2002) Development, validation and utilisation of food-frequency questionnaires – a review. Public Health Nutr 5, 567587.
47 Kristjansdottir, AG, Andersen, LF, Haraldsdottir, J, et al. (2006) Validity of a questionnaire to assess fruit and vegetable intake in adults. Eur J Clin Nutr 60, 408415.
48 Block, G, Norkus, E, Hudes, M, et al. (2001) Which plasma antioxidants are most related to fruit and vegetable consumption? Am J Epidemiol 154, 11131118.
49 Van Kappel, AL, Steghens, JP, Zeleniuch-Jacquotte, A, et al. (2001) Serum carotenoids as biomarkers of fruit and vegetable consumption in the New York Women's Health Study. Public Health Nutr 4, 829835.
50 Al-Delaimy, WK, Ferrari, P, Slimani, N, et al. (2005) Plasma carotenoids as biomarkers of intake of fruits and vegetables: individual-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Clin Nutr 59, 13871396.
51 Gattuso, G, Barreca, D, Gargiulli, C, et al. (2007) Flavonoid composition of citrus juices. Molecules 12, 16411673.
52 Erlund, I, Meririnne, E, Alfthan, G, et al. (2001) Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J Nutr 131, 235241.
53 McNaughton, SA, Marks, GC, Gaffney, P, et al. (2005) Validation of a food-frequency questionnaire assessment of caroteinoid and vitamin E intake using weighed food records and plasma biomarkers: the method of triads model. Eur J Clin Nutr 59, 211218.
54 Kaaks, R & Ferrari, P (2006) Dietary intake assessments in epidemiology: can we know what we are measuring? Ann Epidemiol 16, 377380.
55 Bingham, S, Luben, R, Welch, A, et al. (2008) Associations between dietary methods and biomarkers, and between fruits and vegetables and risk of ischaemic heart disease, in the EPIC Norfolk Cohort Study. Int J Epidemiol 37, 978987.
56 Rasmussen, SE & Breinholt, VM (2003) Non-nutritive bioactive food constituents of plants: bioavailability of flavonoids. Int J Vitam Nutr Res 73, 101111.
57 O'Neill, ME, Carroll, Y, Corridan, B, et al. (2001) A European carotenoid database to assess carotenoid intakes and its use in a five-country comparative study. Br J Nutr 85, 499507.
58 Castenmiller, JJ & West, CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18, 1938.
59 Gibson, RS (2007) The role of diet- and host-related factors in nutrient bioavailability and thus in nutrient-based dietary requirement estimates. Food Nutr Bull 28, S77S100.
60 van het Hof, KH, West, CE, Weststrate, JA, et al. (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130, 503506.
61 Alberg, A (2002) The influence of cigarette smoking on circulating concentrations of antioxidant micronutrients. Toxicology 180, 121137.
62 Crozier, A, Jaganath, IB & Clifford, MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26, 10011043.
63 Kanaze, IF, Bounartzi, MI, Georgarakis, M, et al. (2006) Pharmacokinteics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 61, 472477.
64 Cantilena, LR, Stukel, TA, Greenberg, ER, et al. (1992) Diurnal and seasonal variation of five carotenoids measured in human serum. Am J Clin Nutr 55, 659663.
65 Macdonald, HM, Hardcastle, AC, Duthie, GG, et al. (2009) Changes in vitamin biomarkers during a 2-year intervention trial involving increased fruit and vegetable consumption by free-living volunteers. Br J Nutr 102, 14771486.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed