Skip to main content Accessibility help


  • Access
  • Cited by 63
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Karl, J. Philip Fu, Xueyan Dolnikowski, Gregory G. Saltzman, Edward and Booth, Sarah L. 2014. Quantification of phylloquinone and menaquinones in feces, serum, and food by high-performance liquid chromatography–mass spectrometry. Journal of Chromatography B, Vol. 963, Issue. , p. 128.

    Shah, Krupa Gleason, Lauren and Villareal, Dennis T. 2014. Vitamin K and Bone Health in Older Adults. Journal of Nutrition in Gerontology and Geriatrics, Vol. 33, Issue. 1, p. 10.

    Zotta, Teresa Ricciardi, Annamaria Ianniello, Rocco G. Parente, Eugenio Reale, Anna Rossi, Franca Iacumin, Lucilla Comi, Giuseppe Coppola, Raffaele and Forestier, Christiane 2014. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group. PLoS ONE, Vol. 9, Issue. 6, p. e99189.

    Hamidi, Maryam S. and Cheung, Angela M. 2014. Vitamin K and musculoskeletal health in postmenopausal women. Molecular Nutrition & Food Research, Vol. 58, Issue. 8, p. 1647.

    Caluwe, R. Vandecasteele, S. Van Vlem, B. Vermeer, C. and De Vriese, A. S. 2014. Vitamin K2 supplementation in haemodialysis patients: a randomized dose-finding study. Nephrology Dialysis Transplantation, Vol. 29, Issue. 7, p. 1385.

    Harshman, Stephanie G. Saltzman, Edward and Booth, Sarah L. 2014. Vitamin K. Current Opinion in Clinical Nutrition and Metabolic Care, Vol. 17, Issue. 6, p. 531.

    de Goede, Janette Geleijnse, Johanna M. Ding, Eric L. and Soedamah-Muthu, Sabita S. 2015. Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, Vol. 73, Issue. 5, p. 259.

    Jinghe, Xia 2015. Vitamin K and hepatocellular carcinoma: The basic and clinic. World Journal of Clinical Cases, Vol. 3, Issue. 9, p. 757.

    van Gorp, Rick and Schurgers, Leon 2015. New Insights into the Pros and Cons of the Clinical Use of Vitamin K Antagonists (VKAs) Versus Direct Oral Anticoagulants (DOACs). Nutrients, Vol. 7, Issue. 11, p. 9538.

    Sarewicz, Marcin and Osyczka, Artur 2015. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling. Physiological Reviews, Vol. 95, Issue. 1, p. 219.

    Dauti, Fredrik Hjaltalin Jonsson, Magnus Hillarp, Andreas Bentzer, Peter and Schött, Ulf 2015. Perioperative changes in PIVKA-II. Scandinavian Journal of Clinical and Laboratory Investigation, Vol. 75, Issue. 7, p. 562.

    Baj, Aneta Wałejko, Piotr Kutner, Andrzej Kaczmarek, Łukasz Morzycki, Jacek W. and Witkowski, Stanisław 2016. Convergent Synthesis of Menaquinone-7 (MK-7). Organic Process Research & Development, Vol. 20, Issue. 6, p. 1026.

    Eby, Charles S. 2016. Management of Bleeding Patients. p. 145.

    Cosso, Roberta and Falchetti, Alberto 2016. Vitamin K and bone metabolism: the myth and the truth. Expert Review of Precision Medicine and Drug Development, Vol. 1, Issue. 3, p. 301.

    Harshman, Stephanie G Fu, Xueyan Karl, J Philip Barger, Kathryn Lamon-Fava, Stefania Kuliopulos, Athan Greenberg, Andrew S Smith, Donald Shen, Xiaohua and Booth, Sarah L 2016. Tissue Concentrations of Vitamin K and Expression of Key Enzymes of Vitamin K Metabolism Are Influenced by Sex and Diet but Not Housing in C57Bl6 Mice. The Journal of Nutrition, Vol. 146, Issue. 8, p. 1521.

    Shiraishi, Eri Iijima, Hideki Shinzaki, Shinichiro Nakajima, Sachiko Inoue, Takahiro Hiyama, Satoshi Kawai, Shoichiro Araki, Manabu Yamaguchi, Toshio Hayashi, Yoshito Fujii, Hironobu Nishida, Tsutomu Tsujii, Masahiko and Takehara, Tetsuo 2016. Vitamin K deficiency leads to exacerbation of murine dextran sulfate sodium-induced colitis. Journal of Gastroenterology, Vol. 51, Issue. 4, p. 346.

    Morgan, A.E. Mooney, K.M. Wilkinson, S.J. Pickles, N.A. and Mc Auley, M.T. 2016. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Research Reviews, Vol. 27, Issue. , p. 108.

    Shin, Hanna Eo, Hyeyoon and Lim, Yunsook 2016. Similarities and differences between alpha-tocopherol and gamma-tocopherol in amelioration of inflammation, oxidative stress and pre-fibrosis in hyperglycemia induced acute kidney inflammation. Nutrition Research and Practice, Vol. 10, Issue. 1, p. 33.

    Boulier, A. Schwarz, J. Lespesailles, E. Baniel, A. Tomé, D. and Blais, A. 2016. Combination of micellar casein with calcium and vitamins D2 and K2 improves bone status of ovariectomized mice. Osteoporosis International, Vol. 27, Issue. 10, p. 3103.

    Biesalski, Hans K. 2016. Nutrition meets the microbiome: micronutrients and the microbiota. Annals of the New York Academy of Sciences, Vol. 1372, Issue. 1, p. 53.



      • Send article to Kindle

        To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        The role of menaquinones (vitamin K2) in human health
        Available formats

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        The role of menaquinones (vitamin K2) in human health
        Available formats

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        The role of menaquinones (vitamin K2) in human health
        Available formats
Export citation


Recent reports have attributed the potential health benefits of vitamin K beyond its function to activate hepatic coagulation factors. Moreover, several studies have suggested that menaquinones, also known as vitamin K2, may be more effective in activating extra-hepatic vitamin K-dependent proteins than phylloquinone, also known as vitamin K1. Nevertheless, present dietary reference values (DRV) for vitamin K are exclusively based on phylloquinone, and its function in coagulation. The present review describes the current knowledge on menaquinones based on the following criteria for setting DRV: optimal dietary intake; nutrient amount required to prevent deficiency, maintain optimal body stores and/or prevent chronic disease; factors influencing requirements such as absorption, metabolism, age and sex. Dietary intake of menaquinones accounts for up to 25 % of total vitamin K intake and contributes to the biological functions of vitamin K. However, menaquinones are different from phylloquinone with respect to their chemical structure and pharmacokinetics, which affects bioavailability, metabolism and perhaps impact on health outcomes. There are significant gaps in the current knowledge on menaquinones based on the criteria for setting DRV. Therefore, we conclude that further investigations are needed to establish how differences among the vitamin K forms may influence tissue specificities and their role in human health. However, there is merit for considering both menaquinones and phylloquinone when developing future recommendations for vitamin K intake.

There is increasing interest in the potential health benefits of vitamin K beyond its role in coagulation. Several studies have reported functions for vitamin K beyond its classic role, including the improvement of bone health(1), and the reduction of vascular calcification and cardiovascular risk(2, 3). Moreover, several studies(24) have suggested that menaquinones, also known as vitamin K2, could be more effective in these functions than phylloquinone, also known as vitamin K1. Nevertheless, menaquinones are generally not taken into consideration when developing dietary recommendations for vitamin K. Present recommendations for dietary vitamin K are defined for phylloquinone intake only, and are based on median intakes of phylloquinone in certain regions, such as North America(57). In some cases, the effects of phylloquinone on coagulation have also been accounted for. For healthy adults, adequate intakes of vitamin K range from 55 to 90 μg/d for adult women and 65–120 μg/d for adult men.

The International Life Sciences Institute (ILSI) Europe has selected experts on vitamin K from academia and industry to review the need for specific dietary reference values (DRV) for menaquinones. To achieve this objective, the expert group conducted a thorough review of existing literature on dietary menaquinones and their role in human health to evaluate: (a) whether unique recommendations for menaquinone intake are justified at this time and (b) what additional information is needed to have strong scientific underpinnings for establishing DRV for menaquinones. In defining nutrient requirements, the selection of criteria to establish nutrient adequacy is an important step. For most nutrients, a hierarchy of criteria for nutrient adequacy can be established, ranging from the prevention of clinical deficiency to the optimisation of body stores or status. The goal is to have a low probability of nutrient inadequacy while minimising the potential risk of excess(8). In light of this definition, we have reviewed the literature with a focus on the following criteria for setting DRV: chemical structure and function of menaquinones; dietary intake of menaquinones; absorption and metabolism of menaquinones; amount of menaquinones required to prevent deficiency, maintain optimal body stores and/or prevent chronic disease; factors influencing menaquinone requirements such as age, sex and safety. The evidence for individual menaquinones for each of these items is described and, if known, differences with phylloquinone are described. Based on this evidence, a conclusion on setting a DRV for menaquinones is drawn and recommendations for future research are made.

Chemical structure and function of menaquinones

Vitamin K is a generic term for a number of structurally related compounds that are characterised by their common functional methylated naphthoquinone ring system, and an aliphatic side chain composed of a number of isoprenoid residues. All differences between the various forms of vitamin K originate from the differences in the length and the saturation degree of the side chain(9). Phylloquinone is a single compound with a side chain of four isoprenoid residues, three of which are saturated (Fig. 1). Menaquinones, commonly found in nature, have side chains of varying length between four and thirteen isoprene residues, most of which are unsaturated(10). However, some bacteria produce isoprenologues in which one or more of the prenyl units are saturated(9). Menaquinones are generally denoted as MK-n, where n stands for the number of isoprene residues.

Fig. 1 Chemical structures of K vitamins. MK, menaquinone.

MK-4 is unique among the menaquinones in that it is not synthesised by bacteria. Instead, MK-4 is alkylated from menadione (vitamin K3), a synthetic form of vitamin K that is present in animal feeds, or is the product of tissue-specific conversion directly from dietary phylloquinone, with menadione as the postulated intermediate(11, 12). There is also speculation that longer-chain menaquinones, such as MK-7, can be converted to MK-4 as well(13). The most abundant menaquinones in the human diet are the short-chain MK-4, which originates from animal products, and the long-chain MK-7, MK-8, MK-9 and MK-10.

All forms of vitamin K have one well-known function. They all serve as a cofactor for the post-translational enzyme γ-glutamate carboxylase, which is established by the common naphthoquinone ring structure(14). This enzyme converts certain protein-bound glutamate residues into γ-carboxyglutamate, generally known as Gla. Currently, seventeen members of the Gla protein family are known, including seven proteins involved in blood coagulation (all synthesised in the liver), osteocalcin (OC; bone), matrix Gla protein (MGP; mainly cartilage and vessel wall), growth arrest-specific protein 6, Gla-rich proteins, two proline-rich Gla proteins, two transmembrane Gla proteins, periostin and periostin-like factor(15). With the exception of the clotting factors OC (bone formation) and MGP (inhibitor of soft tissue calcification), the physiological importance of these proteins is not yet fully understood(15). At this time, conformation-specific assays are available for two extra-hepatic Gla proteins (OC and MGP).

Dietary intake of menaquinones

Menaquinones generally are of microbial origin. Important dietary sources are cheese, curd and natto (a traditional Japanese food composed of fermented soya beans)(16), while dietary phylloquinone is mainly found in green vegetables, notably spinach, broccoli, kale and Brussels sprouts(17, 18). Estimated intake of phylloquinone and menaquinones in The Netherlands and Germany has suggested that between 10 and 25 % of total vitamin K intake are provided by menaquinones(16, 19). Information on the dietary intake of menaquinones is, however, limited. This is mainly due to the lack of complete food composition tables that list menaquinone concentrations in common foods. Currently, most food composition data for menaquinones are restricted to single foods such as cheese or yogurt(16, 20). However, a regularly updated and expanding food composition table of foods on the Dutch market is produced at VitaK's laboratories in The Netherlands.

Based on the content of menaquinones of certain foods, regional differences exist both for the form and the amount of menaquinones consumed. For example, in Japan, MK-7 intake has mostly been documented in the diet due to the consumption of natto, while long-chain menaquinones, MK-7 to MK-10, are predominantly consumed by high dairy intake populations, such as the Dutch population. In addition, cheese is the most important source of menaquinones in the European food supply, and therefore menaquinone concentrations in the cheeses of Dutch, German, Swiss, British and French origins were tested(16). Since different lactic acid bacteria are used in European cheeses, a large variability in menaquinone content among the cheeses was found(21). However, it remains to be seen whether these data are applicable to non-European countries.

The few studies that have provided estimates for menaquinone intakes have been mainly performed among Japanese or European populations for which menaquinone-rich foods are present in the diet. A study by Kamao et al. (20) measured the menaquinone content of foods and the estimated intake of MK-4 and MK-7 of 125 young Japanese women using a 3 d weighed food record. The MK-7 intake of this population was originally estimated at 57·4 (sd 83·7) μg/d and accounted for approximately 25 % of the total intake of vitamin K. However, this estimate is mainly driven by natto consumption, as it accounted for 99 % of the MK-7 intake and almost half of the population studied consumed natto. After stratifying by natto consumption, intake of MK-7 was estimated at 154·1 (sd 87·8) μg/d among natto consumers, but data on non-natto consumers were not provided.

Several Dutch studies investigating the associations of menaquinone intake with disease incidence obtained estimates for menaquinone intake(2, 3, 22, 23) (Table 1) using FFQ. These intake estimates were based on direct measurements of menaquinones in foods in combination with published data(16, 24). The self-reported mean intake of menaquinones was approximately 31 μg/d(3, 22). In the EPIC-Netherlands cohort, cheese contributed 53 % of menaquinone intake, while milk products and meat contributed 19 and 17 %, respectively. The most prominent long-chain menaquinone reported in the diet was MK-9. In the Rotterdam Study, MK-5 to MK-10 contributed 23·1 (sd 16·3) μg/d for men and 20·7 ± 13·8 μg/d for women. These data on food contents of menaquinones have also been applied to a German cohort of approximately 12 000 men(19). Similar estimates of 34·7 μg/d (interquartile range 25·7–45·7) were reported for all menaquinones and 18·0 μg/d (11·7–27·0) for MK-5 to MK-9, with cheese being the most important food source of menaquinones(19).

Table 1 Menaquinone intake, arterial calcification and risk of CHD

BAC, breast arterial calcification; CAC, coronary artery calcification.

Finally, the European Food Safety Authority reported data on UK intake of menaquinones based on the UK National Dietary and Nutrition Survey(25). This study used weighed dietary records, albeit based on the menaquinone content from a limited number of food items(25). The overall estimated intake of menaquinones ranged from 36 μg/d (female adults) to 54 μg/d (male teenagers). The mean estimated intake of menaquinones among male adults was 43 μg/d, which is similar to the intakes reported for other European countries.

It should be noted that estimates from the Dutch and German populations were obtained from FFQ that are designed to estimate the relative dietary intake of large populations, but not to estimate the absolute dietary intake. These limitations should be kept in mind when interpreting these data. In order to obtain more precise estimates of menaquinone intakes, studies using (weighed) food records and concentrations of individual menaquinones obtained from representative foods from different food supplies are required. Nonetheless, current studies have shown estimated intakes of menaquinones ranging between 30 and 50 μg/d, which account for up to 25 % of intake of total vitamin K.

Absorption and metabolism of menaquinones

Phylloquinone is primarily obtained from green, leafy vegetables in which it is tightly bound to the membranes of plant chloroplasts, and thus less bioavailable compared with phylloquinone obtained from plant oils and/or dietary supplements(11). Menaquinones, which are primarily derived from animal-based sources, are consumed in food matrices containing more fat that may improve absorption and lead to higher bioavailability than phylloquinone(26). However, this has yet to be systematically tested for all menaquinones.

Following intestinal absorption, all vitamin K forms are incorporated into TAG-rich lipoproteins and transported primarily to the liver, but also to other target tissues. Circulating TAG-bound forms of vitamin K peak at around 4–10 h after intake and the majority of phylloquinone and MK-4 are removed from the circulation by 24 h postprandially(13, 16, 27). Currently, human data on the absorption of menaquinones from food sources are limited to MK-7. These MK-7 data show similar peaks at 4 h after intake, but MK-7 does not appear to be completely removed from the circulation after 72–96 h(13, 16). The different pharmacokinetics among various vitamin K forms also result in very different plasma half-life times. Whereas phylloquinone has a relatively short half-life time(28), MK-7 has a reported half-life time of several days(13, 27). Available data indicate higher absorption and bioavailability of MK-7 than phylloquinone, which may facilitate its uptake by various target tissues.

Another difference between the short-chain forms of vitamin K (phylloquinone and MK-4) and the long-chain forms relates to tissue distribution. For example, one study showed that MK-9 is preferentially incorporated in LDL, which facilitates its transport to non-hepatic target tissues(29). It is not known whether other long-chain menaquinones have similar transport differences. MK-4 is unique among the menaquinones in its tissue distribution, which relates to its non-bacterial origin. As recently shown in a rodent model using stable isotopes(30), phylloquinone consumed in the form of leafy greens is converted to MK-4 in some, but not all, tissues. The labelled MK-4 was most abundant in the brain, kidney, fat and reproductive organs. In contrast to phylloquinone as the sole dietary source of vitamin K, there was no conversion of phylloquinone to MK-4 in the liver nor were there detectable amounts of labelled MK-4 in serum. These data confirm earlier rodent studies that have reported differences in tissue distribution between phylloquinone and MK-4(31, 32).

A caveat to these conclusions is that the data for phylloquinone are much more comprehensive than those for menaquinones. Many investigators have studied phylloquinone pharmacokinetics using different study designs, including stable isotopes(3335). In contrast, menaquinone pharmacokinetic data are limited: (1) in the forms studied (mainly limited to MK-7); (2) from a lack of replication by independent laboratories; (3) by an absence of using stable isotope technology. More research is clearly required to quantify the differences in absorption and bioavailability among the various forms of vitamin K in order to set nutrient requirements.

Microbiotic production of menaquinones

Most aerobic Gram-positive bacteria and the majority of anaerobic bacteria produced by the gut use menaquinones in their electron transport pathways. The length of the side chain, as indicated by different menaquinones, is controlled by specific bacteria(10). The reasons for this are not entirely clear, but the length and degree of saturation of the menaquinone side chain are often dependent on the growth temperature of a given species(36). Based on qualitative bacteriological analyses, several bacteria have been identified to produce specific menaquinones. Menaquinones produced by the gut flora have been tabulated by previous studies(3739). For example, Bacteroides fragilis produces MK-10 to MK-12, while Eubacterium lentum produces MK-6. Likewise, bacteria used as starter cultures for the production of foods such as cheese may also produce specific menaquinones. For example, the lactic acid bacteria Lactococcus lactis ssp. lactis and L. lactis ssp. cremoris produce mainly MK-8 and MK-9(40), while propionibacteria produce mainly MK-9(41). The implications for the relative bioavailability of dietary menaquinones produced by bacteria in the food supply need to be considered relative to the bioavailability of menaquinones produced by bacteria in the human intestine.

It was once stated that up to 50 % of the human requirement for vitamin K was fulfilled by the intestinal production of menaquinones(42, 43). The 50 % estimate was based on semi-quantitative measurements of the vitamin K content of the human liver, in which one-half of the vitamin K content was phylloquinone and the other half was a mixture of long-chain menaquinones(44). However, subsequent studies indicated that phylloquinone accounted for less than 10 % of the vitamin K content in the human liver, with a greater preponderance of MK-10, MK-11 and MK-12 than previously assumed(43, 45). Based on these hepatic menaquinone concentrations, one would predict that circulating long-chain menaquinones would be in much higher concentrations than phylloquinone should these menaquinones have a major contribution to the human requirement for vitamin K. This, however, does not appear to be the case, and the route of absorption of bacterially produced menaquinones is still unclear. The absorption of all vitamin K forms takes place in the small intestine via a process requiring bile salts(46). However, bile salts are absent in the colon where the majority of menaquinones are produced, suggesting a low absorption of these vitamin K forms(47). This was confirmed by Ichihashi et al. (48), who showed that the absorption of intestinally produced menaquinones in rats is low and that the absorption rates decrease markedly with the length of the side chain. A study in infants also indicated that intestinally produced menaquinones are not well absorbed(49). This study compared faecal and serum concentrations of phylloquinone and menaquinones of formula-fed infants with breast-fed infants. Formula-fed infants had higher serum and faecal phylloquinone concentrations as well as a higher MK-5 to MK-9 faecal concentration compared with breast-fed infants. Serum menaquinones were undetected in most formula-fed infants, suggestive of poor absorption(49).

Another consideration is that most bacterially produced menaquinones are within the bacterial membranes, hence not readily bioavailable. It has been postulated that these bacterially synthesised menaquinones may be important in maintaining normal coagulation among severely ill patients with prolonged vitamin K deficiency(50); however, current data are inconclusive regarding the relative contribution of menaquinones to fulfilling the dietary requirements for vitamin K.

The amount of menaquinones required to prevent deficiency and maintain optimal body stores

To understand the impact of menaquinones on health, it is necessary to demonstrate the link between the intakes of menaquinones and the nutritional status of vitamin K. Several biochemical markers of vitamin K status are available and all have their strengths and weaknesses, as detailed elsewhere(51). However, measures of plasma or tissue menaquinone concentrations are needed to isolate the effects of menaquinones from those of phylloquinone on human health. Other markers of vitamin K status, which include urinary metabolites of vitamin K(52, 53), coagulation times and uncarboxylated Gla proteins, cannot differentiate the effects of menaquinones from phylloquinone. Therefore, differences between menaquinones and phylloquinone can only be determined through the use of study designs that directly compare the response of individual biomarkers with the intakes of individual forms of vitamin K.

Under controlled conditions of dietary intake, circulating menaquinone concentrations increase in response to the high intake of menaquinones and decline over time when the dietary source of menaquinones is removed(13, 26). However, data are limited, since the HPLC and MS techniques are limited to a few qualified laboratories and the long-chain menaquinones are often below the detection limit in the circulation when measured in the general population. Only a few studies have measured plasma menaquinones in response to the intake of individual menaquinones, and these have been limited to MK-7 or MK-4 supplementation(13, 27, 54). For plasma MK-7, two studies showed a clear dose–response effect on circulating MK-7 concentrations after supplementation with doses ranging between 45 and 420 μg(13, 54). In contrast, MK-4 was not detected in the circulation following a single dose of 420 μg(27).

Only two studies have investigated the response of vitamin K urinary metabolites to single oral doses of menaquinones. Both studies showed a good response of urinary menadione(12) or side-chain catabolite(55) excretion to relatively high doses of 15 or 45 mg of MK-4 or 1 mg of MK-7. Both studies included a direct comparison of menaquinones with phylloquinone, and showed similar results for both vitamin K forms. Harrington et al. (53) showed that the excretion of the 5- and 7-carbon side-chain metabolites responds to the depletion and repletion of phylloquinone. A similar response to menaquinones would be expected, but no studies of similar design have been conducted.

Prothrombin time (PT), also expressed as an international normalised ratio, is a test of coagulation that can reflect clinical deficiency of vitamin K due to frank deficiency or the antagonism of vitamin K. However, PT is non-specific because abnormal values are also indicative of diseases unrelated to vitamin K deficiency. PT changes only when prothrombin concentrations drop below 50 % of normal, demonstrating its low sensitivity for detecting the deficiency of vitamin K(56). To date, only two studies(13, 57) have reported the effects of MK-7 and MK-9 on coagulation parameters. In these studies, the antidotal effect of single doses of MK-7 and MK-9 was studied in volunteers stabilised on oral vitamin K antagonists. Both studies showed that MK-7 and MK-9 decreased the international normalised ratio and the concentrations of coagulation factors, and this effect was stronger for MK-7 than phylloquinone(13, 57). However, in one study(57), menaquinones were provided as different food sources with differing doses and bioavailability, which may have influenced the results. Although these studies are informative in the clinical context of the reversal of oral anticoagulation, they are not suitable for determining the amount of menaquinones required to prevent deficiency or maintain optimal body stores. Although the effects of coagulation factors on depletion or repletion with menaquinones have not been investigated to date, sustained intakes as low as 10 μg/d of phylloquinone for several weeks do not prolong PT in otherwise healthy adults(7, 5860).

Thus far, conformation-specific tests have been developed for prothrombin, OC and MGP to evaluate the extent to which the various Gla proteins are carboxylated in healthy subjects. Advantages of measuring uncarboxylated vitamin K-dependent proteins are that insufficiencies measured in circulating forms theoretically reflect what occurs at the tissue level. Undercarboxylated prothrombin, also known as PIVKA-II, detects abnormalities in prothrombin before the prolongation of PT, but does not have the sensitivity to detect the variability of usual vitamin K intakes observed in normal healthy populations. PIVKA-II has been used as a marker of vitamin K status in healthy people and has been shown to respond to both dietary depletion and subsequent repletion with phylloquinone(61, 62). However, only one study(63) investigated the effect of a single intravenous dose of 10 mg MK-4 in vitamin K-deficient cancer patients, and showed a decrease in PIVKA-II levels 1–3 d after ingestion.

The effect of menaquinones on the proportion of OC that is uncarboxylated (ucOC) has been more frequently studied. ucOC is highly responsive to supplementation with either MK-4 or MK-7 in doses ranging from 45 μg/d to 45 mg/d (MK-4 only)(13, 54, 6466). Only a low dose of 45 μg MK-7/d did not lead to a significant reduction in ucOC(54). A direct comparison of phylloquinone with MK-7 supplementation indicated that MK-7 is more effective in carboxylating OC than phylloquinone(13). Assays to measure desphospho-uncarboxylated MGP only recently became available. Since that time, several intervention studies have shown clear dose–response effects of desphospho-uncarboxylated MGP to MK-7 supplementation with doses ranging between 10 and 360 μg/d(6770). However, a direct comparison between menaquinones and phylloquinone in the response of desphospho-uncarboxylated MGP to supplementation by the individual vitamin K forms has not been made.

The amount of menaquinones required to prevent chronic diseases

Menaquinones, coronary calcification and CVD

Coronary artery calcification is an important predictor of CVD(71). MGP is an inhibitor of vascular calcification(72). Through carboxylation of MGP, vitamin K may help reduce coronary calcification and thereby reduce the risk of CVD. Observational studies have indeed shown that a high intake of vitamin K is associated with reduced coronary calcification and a reduced risk of CVD(2, 3, 23). The results from some studies suggest that this is mainly due to menaquinones(24, 23). Thus far, three cross-sectional studies(2, 3, 73) investigated the associations of menaquinone intake and coronary calcification, as summarised in Table 1. In the Rotterdam Study, intakes of menaquinones were lower in participants with severe aortic calcifications (25·6 μg/d) than in participants with moderate or mild calcifications (28·6 and 28·8 μg/d, respectively; P= 0·001)(3). A strong inverse relationship between menaquinone intake and severe calcification was found in the mid and upper tertiles of menaquinone intake compared with the lowest tertile, reaching significance in the highest tertile with a menaquinone intake of more than 32·7 μg/d. Using breast arterial calcification as a measure of arterial calcification, the prevalence of breast arterial calcification was less common in the highest (9 %) quartile of menaquinone intakes, compared with the lowest quartile (13 %)(73). This study showed a similar association to that of Geleijnse et al. (3) with an OR of 0·7 (95 % CI 0·5, 1·1), although it did not reach significance. Similarly, a high menaquinone intake over 48 μg/d was associated with reduced coronary calcification among 600 middle-aged women(2). We are not aware of any randomised trials to date that investigated the effect of menaquinones on the progression of arterial calcification.

Also, two of the previously mentioned cohort studies investigated the relationship between menaquinone intake and the risk of CHD (Table 1). In the Rotterdam cohort(3), the relative risk of incident CHD was reduced in the upper tertile of menaquinone intake compared with the lowest tertile (0·43; 95 % CI 0·24, 0·77). In the Prospect-EPIC cohort(23), the investigators also observed an inverse association between the intake of menaquinones and the risk of CHD with a hazard ratio of 0·91 (95 % CI 0·85, 1·00, P= 0·08) per 10 μg/d of menaquinone intake. In order to compare these results with previous studies using categories, a menaquinone intake of 35 μg/d would lead to a hazard ratio of about 0·7, which compares nicely with previous studies. The association between menaquinone intake and the incidence of stroke has not been investigated to date. Of note, several of these studies also investigated the relationship between phylloquinone intake and coronary calcification or the risk of CHD, but could not detect significant associations(2, 3, 23). Whether this is due to biological differences between menaquinones and phylloquinone or perhaps lower validity of the FFQ to estimate phylloquinone intake is currently unclear(2). Finally, these associations have only been investigated in Dutch populations and generalisability of these results should be studied in different populations.

Menaquinones and bone

In bone, three vitamin K-dependent proteins have been isolated: protein S; MGP; OC. The anticoagulant protein S is synthesised by osteoblasts (bone-forming cells), but its role in bone metabolism is unclear. MGP has been found in bone, dentine, cartilage and soft tissue, including blood vessels, and is associated with the organic matrix and mobilisation of bone Ca. The results of animal studies suggest that MGP prevents the calcification of soft tissue and cartilage, while facilitating normal bone growth and development(74). OC is a protein synthesised by osteoblasts. The synthesis of both OC and MGP is regulated by calcitriol and retinoic acid. Higher ucOC concentrations, indicating a low vitamin K status, were associated with a higher hip fracture risk and lower bone mineral density (BMD) in adults(7585) and children(8689). Unfortunately, the proportion of ucOC does not differ between phylloquinone and menaquinones in terms of the form responsible as an enzyme cofactor. However, serum menaquinone levels were lower in patients with osteoporosis, osteopenia and osteoporotic fractures compared with controls(9093). In addition, an inverse association was found between circulating MK-7 levels and the incidence of vertebral fractures in Japanese women, although this association was stronger for phylloquinone and fracture risk(94).

Intervention studies using pharmacological doses of MK-4 showed beneficial effects on bone parameters(1). However, these intervention studies used very high doses of MK-4 (generally 45 mg) that cannot be obtained from the habitual diet. Since this paper is focused on dietary doses that are relevant for nutritional requirements, we will focus on intervention studies that used doses that can be nutritionally obtained. Although natto contains more than 100 times as much menaquinones as various cheeses, studies on natto or its equivalent amount of MK-7 are considered within the dietary intake range.

Intervention studies investigating the effect of menaquinone supplementation on bone markers are shown in Table 2. Whereas MK-7 at low doses did not affect bone formation(64, 65), intake of natto three times per week increased bone-specific alkaline phosphatase when compared with once-per-week natto intake(95). Only one study showed decreased bone resorption due to a combination of vitamin K forms, vitamin D3, Ca and lifestyle recommendations(96). This finding was independent of the form of vitamin K taken, although on a molecular basis, the daily intake of MK-7 (0·154 μmol) in this study was about 30 % less than that of phylloquinone (0·221 μmol).

Table 2 Intervention studies on the dietary levels of vitamin K, bone markers and bone mineral density (BMD)

DBPC, double-blind placebo-controlled; MK-7, menaquinone-7; NA, not applicable.

* Urinary deoxypyridinoline.

Bone-specific alkaline phosphatase.

Degradation products of C- or N-terminal telopeptides of type I collagen.

A few cross-sectional studies investigated the association between menaquinone intake and bone maintenance. For example, two Japanese studies showed that the usual dietary intake of natto was effective in maintaining bone stiffness(97) and was positively associated with a 3-year change in BMD at the femoral neck(98). Within Norwegian individuals, no linear association was found between dietary menaquinones and BMD of the total hip; however, fractional polynomial regression analyses for the detection of non-linear associations showed a small, positive association between dietary menaquinones and BMD among women(99). Of note, these studies described a proposed effect of dietary menaquinones via natto consumption. Although MK-7 is an important nutrient of natto, natto also contains other ingredients that have been postulated to promote bone health. Hence MK-7 may be a surrogate marker for other bone-promoting ingredients in these studies.

As shown in Table 2, three intervention studies on menaquinones and BMD used doses of menaquinones that are attainable with the diet. Only one study(96) observed a beneficial effect of vitamin K on BMD of the lumbar spine. The two other studies did not show an effect on bone stiffness or the rate of bone loss. The main differences between these three studies are the inclusion of vitamin D as part of the treatment and the regional differences in the prevalence of vitamin D deficiency(100). These vitamin D-related disparities in study designs may have influenced the effect of menaquinones.

Only one observational study specifically examined the association between dietary menaquinone intake and fracture risk, reporting that a low intake of phylloquinone, but not menaquinones, was associated with an increased risk of hip fractures in Norwegian individuals(101). To date, no intervention study has evaluated the efficacy of menaquinones in doses attainable in the diet in reducing fracture risk.

Only a few studies have made a direct comparison between menaquinones and phylloquinone for bone health. These studies indicated no differences(96) or showed stronger effects for phylloquinone than menaquinones(94, 101).

Requirements across the life cycle

Dietary intake has historically been considered the primary determinant of vitamin K status(11). However, other non-dietary factors are emerging as determinants, such as age and ethnicity(51). To develop recommendations for dietary intakes(8), sufficient data are needed to evaluate requirements across the life cycle. The data for phylloquinone are sparse(7), but there are even less data for menaquinones. Currently, data on the intake or supplementation of menaquinones are limited to the assessment in children and teenagers in the UK National Dietary and Nutrition Survey(25).

The only clinically indicated use of vitamin K is as a prophylactic against vitamin K deficiency bleeding in otherwise healthy-appearing neonates(102). The low content of vitamin K in breast milk, low placental transfer of vitamin K, low levels of clotting factors at birth and a sterile gut are all contributing factors to the risk of vitamin K deficiency bleeding in the first few months of life. Prevention of vitamin K deficiency bleeding by oral or intramuscular administration of vitamin K at birth is standard practice in many countries. Whereas most countries use phylloquinone, certain Asian countries, including Japan, use MK-4 prophylactically(102). At no other point in the life cycle is frank deficiency of vitamin K a concern among an otherwise healthy population.

Safety of high vitamin K intake

There is no documented case of toxicity for phylloquinone or menaquinones(7, 25). The European Food Safety Authority's safety assessment of menaquinones as a source of vitamin K added for nutritional purposes concluded that low doses of menaquinones presented no safety concerns(25). Similarly, an animal study reported no toxicity associated with synthetic MK-7 administered in a single oral dose up to 2000 mg/kg or for 90 d of oral administration of 10 mg/kg per d(103).

It is often postulated that excessive vitamin K may result in overcoagulation, i.e. increased thrombosis risk. However, vitamin K-dependent proteins have a limited number of Glu residues capable of γ-carboxylation per molecule, beyond which there can be no further γ-carboxylation or excessive coagulation. Despite this, it is critical to demonstrate that a high intake of menaquinones does not increase thrombosis risk. It was shown in rats that thrombosis risk is not increased at doses up to 250 mg/kg of MK-4(104). In human subjects, the endogenous thrombin potential, which is the most sensitive marker to evaluate thrombosis risk in plasma(105), was not affected by MK-7 intakes as high as 360 μg/d for 6 weeks(70). The only exception to this is observed in individuals on coumarin-based oral anticoagulants, for whom dietary supplementation with vitamin K can influence the stability of the international normalised ratio(59, 106). MK-7 has the potential to interfere with oral anticoagulants at doses greater than 50 μg/d(13). However, there is little collective experience on the potential toxicity or adverse events associated with sustained menaquinone supplementation among individuals with normal coagulation.

In Asia, MK-4 is routinely used for osteoporosis treatment in doses of 45 mg/d without reported toxicity. Reported adverse effects associated with these high doses are limited to skin rashes that subside with cessation of the MK-4 dosing(107). As concluded by the European Food Safety Authority(25), phase I clinical trials have not yet been designed to test the safety of menaquinones nor has any form of vitamin K been adequately tested for mutagenicity. However, it is biologically implausible to attain such high levels of intake and sufficient bioavailability from menaquinones obtained from food sources to present a risk to health.


There is growing speculation that certain dietary menaquinones, while consumed in lower quantities than phylloquinone, may have unique and important contributions to the role of vitamin K on human health. However, present DRV for vitamin K are exclusively based on phylloquinone. In recognition of this emerging paradigm shift in vitamin K nutrition research, we have reviewed existing literature to evaluate the current state of knowledge on menaquinones that would be needed for inclusion in the DRV for vitamin K. It was concluded that differences in the chemical structure of menaquinones compared with phylloquinone may lead to differences in absorption and bioavailability (Table 3). Several studies have shown that certain forms of menaquinones may be more bioavailable and effective in carboxylating particular extra-hepatic Gla proteins than phylloquinone. The intake of menaquinones accounts for up to 25 % of the total intake of vitamin K, and should there be a higher bioavailability, menaquinones would be important to consider in their contribution to human health. Indeed, certain observational studies have indicated that high intakes of menaquinones may be associated with greater reductions of vascular calcification and the risk of CVD than comparable amounts of phylloquinone. Such effects have not been observed for bone health. However, these data are limited to observational studies conducted among Dutch or Japanese populations. Moreover, food composition tables for menaquinones are limited and available only for a few countries. In addition, studies investigating the bioavailability of menaquinones using stable isotope techniques are lacking. Therefore, research is warranted to compile more elaborate food composition data of menaquinones and more accurate data on the intake of menaquinones, at different stages of the life cycle (Table 3). These data should be used to investigate the relationship with disease incidence in populations other than the Dutch or Japanese. Stable isotope studies are required to quantify differences in absorption, bioavailability and distribution over the body between individual menaquinone forms and phylloquinone. Finally, intervention studies with clinical endpoints and a more elaborate validation of biomarkers for vitamin K status are required to quantify how the bioavailability and tissue distribution of menaquinones affect vitamin K status and health outcomes.

Table 3 Summary and recommendations for future research

MK-4, menaquinone-4.

Clearly, significant gaps in the current knowledge on menaquinones exist. However, there is merit for considering both menaquinones and phylloquinone when developing future recommendations for vitamin K intake.


The present study was commissioned by the Addition of Nutrients to Foods Task Force and the Nutrient Requirements Task Force of the European Branch of the European branch of the International Life Sciences Institute (ILSI Europe). Industry members of these task forces are Barilla G. & R. Fratelli, BASF SE, Bunge Europe, Coca-Cola Europe, Danone, DSM, Kellogg Europe, Nestlé, Red Bull, Royal FrieslandCampina, Ulker Bisküvi and Unilever. This publication was coordinated by Athanasia Baka, Evangelia Grammatikaki and Christophe Matthys, Scientific Project Managers at ILSI Europe. For further information about ILSI Europe, please email or call +32 2 771 00 14. The opinions expressed herein and the conclusions of this publication are those of the authors and do not necessarily represent the views of ILSI Europe nor those of its member companies. A. B. is employed by ILSI Europe. J. W. J. B., S. L. B. and C. V. received an honorarium from ILSI Europe for their participation in this publication and/or reimbursement of their travel and accommodation costs for attending the related meetings. J. W. J. B. was supported by a personal Dr Dekker postdoctoral grant (2008T062) from the Netherlands Heart Foundation. S. L. B. was supported by the USDA, Agricultural Research Service under Cooperative Agreement no. 58–1950-7-707. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the USDA. VitaK collaborates with a variety of industries in the nutrition area and performs contract research on both vitamin K1 and K2.

J. W. J. B., S. L. B., E. G. H. M. v. d. H. and C. V. wrote the manuscript. All authors participated in the discussions about the content of the manuscript. E. S. and A. B. critically reviewed the manuscript for important intellectual content. All authors read and approved the final manuscript.


1Cockayne, S, Adamson, J, Lanham-New, S, et al. (2006) Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 166, 12561261.
2Beulens, JW, Bots, ML, Atsma, F, et al. (2009) High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 203, 489493.
3Geleijnse, JM, Vermeer, C, Grobbee, DE, et al. (2004) Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 134, 31003105.
4Spronk, HM, Soute, BA, Schurgers, LJ, et al. (2003) Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J Vasc Res 40, 531537.
5Australian National Health and Medical Research Council, New Zealand Ministry of Health (2005) Vitamin K. Nutrient Reference Values for Australia and New Zealand, pp. 147151. Canberra: Commonwealth of Australia.
6FAO Rome Food and Nutrition Division (2001) Vitamin K. Human Vitamin and Mineral Requirements: Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand, pp. 133150. Rome: FAO.
7National Research Council (2000) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.
8EFSA Panel on Dietetic Products, Nutriton and Allergies (NDA) (2010) Scientific Opinion on principles for deriving and applying Dietary Reference Values. EFSA J 8, 1458.
9Shearer, MJ & Newman, P (2008) Metabolism and cell biology of vitamin K. Thromb Haemost 100, 530547.
10Collins, MD & Jones, D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45, 316354.
11Booth, SL & Suttie, JW (1998) Dietary intake and adequacy of vitamin K. J Nutr 128, 785788.
12Thijssen, HH, Vervoort, LM, Schurgers, LJ, et al. (2006) Menadione is a metabolite of oral vitamin K. Br J Nutr 95, 260266.
13Schurgers, LJ, Teunissen, KJ, Hamulyak, K, et al. (2007) Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 109, 32793283.
14Rishavy, MA & Berkner, KL (2012) Vitamin K oxygenation, glutamate carboxylation, and processivity: defining the three critical facets of catalysis by the vitamin K-dependent carboxylase. Adv Nutr 3, 135148.
15McCann, JC & Ames, BN (2009) Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 90, 889907.
16Schurgers, LJ & Vermeer, C (2000) Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 30, 298307.
17Bolton-Smith, C, Price, RJ, Fenton, ST, et al. (2000) Compilation of a provisional UK database for the phylloquinone (vitamin K1) content of foods. Br J Nutr 83, 389399.
18Shearer, MJ & Bolton-Smith, C (2000) The UK food data-base for vitamin K and why we need it. Food Chem 68, 213218.
19Nimptsch, K, Rohrmann, S & Linseisen, J (2008) Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr 87, 985992.
20Kamao, M, Suhara, Y, Tsugawa, N, et al. (2007) Vitamin K content of foods and dietary vitamin K intake in Japanese young women. J Nutr Sci Vitaminol (Tokyo) 53, 464470.
21Fox, PF & McSweeney, PLH (2004) Cheese: an overview. In Cheese Chemistry, Physics and Microbiology, 1st vol., 3rd ed., pp. 1–18 [PF Fox, PLH McSweeney, TM Cogan and TP Guinee, editors]. London: Elsevier Academic Press.
22Beulens, JW, Van der, A D, Grobbee, DE, et al. (2010) Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 33, 16991705.
23Gast, GC, de Roos, NM, Sluijs, I, et al. (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis 19, 504510.
24Elder, SJ, Haytowitz, DB, Howe, J, et al. (2006) Vitamin k contents of meat, dairy, and fast food in the U.S. Diet. J Agric Food Chem 54, 463467.
25Bresson, JL, Flynn, A, Heinonen, M, et al. (2008) Vitamin K2 added for nutritional purpose in foods for particular nutritional uses, food supplements and foods intended for the general population. EFSA J 822, 131.
26Gijsbers, BL, Jie, KS & Vermeer, C (1996) Effect of food composition on vitamin K absorption in human volunteers. Br J Nutr 76, 223229.
27Sato, T, Schurgers, LJ & Uenishi, K (2012) Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 11, 93.
28Novotny, JA, Kurilich, AC, Britz, SJ, et al. (2010) Vitamin K absorption and kinetics in human subjects after consumption of 13C-labelled phylloquinone from kale. Br J Nutr 104, 858862.
29Schurgers, LJ & Vermeer, C (2002) Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta 1570, 2732.
30AL Rajaba, A, Booth, SL, Peterson, JW, et al. (2012) Deuterium-labeled phylloquinone has tissue-specific conversion to menaquinone-4 among Fischer 344 male rats. J Nutr 142, 841845.
31Ronden, JE, Thijssen, HH & Vermeer, C (1998) Tissue distribution of K-vitamers under different nutritional regimens in the rat. Biochim Biophys Acta 1379, 1622.
32Thijssen, HH & Drittij-Reijnders, MJ (1994) Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. Br J Nutr 72, 415425.
33Fu, X, Peterson, JW, Hdeib, M, et al. (2009) Measurement of deuterium-labeled phylloquinone in plasma by high-performance liquid chromatography/mass spectrometry. Anal Chem 81, 54215425.
34Jones, KS, Bluck, LJ, Wang, LY, et al. (2008) A stable isotope method for the simultaneous measurement of vitamin K1 (phylloquinone) kinetics and absorption. Eur J Clin Nutr 62, 12731281.
35Jones, KS, Bluck, LJ, Wang, LY, et al. (2009) The effect of different meals on the absorption of stable isotope-labelled phylloquinone. Br J Nutr 102, 11951202.
36Nowicka, B & Kruk, J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797, 15871605.
37Fernandez, F & Collins, MD (1987) Vitamin-K composition of anaerobic gut bacteria. FEMS Microbiol Lett 63, 175180.
38Hill, MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6, Suppl. 1, S43S45.
39Mathers, JC, Fernandez, F, Hill, MJ, et al. (1990) Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. Br J Nutr 63, 639652.
40Morishita, T, Tamura, N, Makino, T, et al. (1999) Production of menaquinones by lactic acid bacteria. J Dairy Sci 82, 18971903.
41Hojo, K, Watanabe, R, Mori, T, et al. (2007) Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J Dairy Sci 90, 40784083.
42Conly, JM & Stein, K (1992) The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasis. Prog Food Nutr Sci 16, 307343.
43Suttie, JW (1995) The importance of menaquinones in human nutrition. Annu Rev Nutr 15, 399417.
44Duello, TJ & Matschiner, JT (1972) Characterization of vitamin K from human liver. J Nutr 102, 331335.
45Usui, Y, Tanimura, H, Nishimura, N, et al. (1990) Vitamin K concentrations in the plasma and liver of surgical patients. Am J Clin Nutr 51, 846852.
46Olson, RE (1984) The function and metabolism of vitamin K. Annu Rev Nutr 4, 281337.
47Conly, JM & Stein, K (1992) Quantitative and qualitative measurements of K vitamins in human intestinal contents. Am J Gastroenterol 87, 311316.
48Ichihashi, T, Takagishi, Y, Uchida, K, et al. (1992) Colonic absorption of menaquinone-4 and menaquinone-9 in rats. J Nutr 122, 506512.
49Fujita, K, Kakuya, F & Ito, S (1993) Vitamin K1 and K2 status and faecal flora in breast fed and formula fed 1-month-old infants. Eur J Pediatr 152, 852855.
50Ramotar, K, Conly, JM, Chubb, H, et al. (1984) Production of menaquinones by intestinal anaerobes. J Infect Dis 150, 213218.
51Booth, SL & AL Rajaba, A (2008) Determinants of vitamin K status in humans. Vitam Horm 78, 122.
52AL Rajaba, A, Peterson, J, Choi, SW, et al. (2010) Measurement of menadione in urine by HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 878, 24572460.
53Harrington, DJ, Booth, SL, Card, DJ, et al. (2007) Excretion of the urinary 5C- and 7C-aglycone metabolites of vitamin K by young adults responds to changes in dietary phylloquinone and dihydrophylloquinone intakes. J Nutr 137, 17631768.
54Bruge, F, Bacchetti, T, Principi, F, et al. (2011) Olive oil supplemented with menaquinone-7 significantly affects osteocalcin carboxylation. Br J Nutr 106, 10581062.
55Harrington, DJ, Soper, R, Edwards, C, et al. (2005) Determination of the urinary aglycone metabolites of vitamin K by HPLC with redox-mode electrochemical detection. J Lipid Res 46, 10531060.
56Suttie, JW (1992) Vitamin K and human nutrition. J Am Diet Assoc 92, 585590.
57Schurgers, LJ, Shearer, MJ, Hamulyak, K, et al. (2004) Effect of vitamin K intake on the stability of oral anticoagulant treatment: dose–response relationships in healthy subjects. Blood 104, 26822689.
58Frick, PG, Riedler, G & Brogli, H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23, 387389.
59Suttie, JW, Mummah-Schendel, LL, Shah, DV, et al. (1988) Vitamin K deficiency from dietary vitamin K restriction in humans. Am J Clin Nutr 47, 475480.
60Udall, JA (1965) Human sources and absorption of vitamin K in relation to anticoagulation stability. JAMA 194, 127129.
61Booth, SL, Lichtenstein, AH, O'Brien-Morse, M, et al. (2001) Effects of a hydrogenated form of vitamin K on bone formation and resorption. Am J Clin Nutr 74, 783790.
62Booth, SL, Martini, L, Peterson, JW, et al. (2003) Dietary phylloquinone depletion and repletion in older women. J Nutr 133, 25652569.
63Furukawa, M, Nakanishi, T, Okuda, H, et al. (1992) Changes of plasma des-gamma-carboxy prothrombin levels in patients with hepatocellular carcinoma in response to vitamin K. Cancer 69, 3138.
64Emaus, N, Gjesdal, CG, Almas, B, et al. (2010) Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporos Int 21, 17311740.
65Tsukamoto, Y, Ichise, H, Kakuda, H, et al. (2000) Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and gamma-carboxylated osteocalcin concentration in normal individuals. J Bone Miner Metab 18, 216222.
66van Summeren, MJ, Braam, LA, Lilien, MR, et al. (2009) The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr 102, 11711178.
67Cranenburg, EC, Koos, R, Schurgers, LJ, et al. (2010) Characterisation and potential diagnostic value of circulating matrix Gla protein (MGP) species. Thromb Haemost 104, 811822.
68Dalmeijer, GW, van der Schouw, YT, Magdeleyns, E, et al. (2012) The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis 225, 397402.
69Theuwissen, E, Cranenburg, EC, Knapen, MH, et al. (2012) Low-dose menaquinone-7 supplementation improved extra-hepatic vitamin K status, but had no effect on thrombin generation in healthy subjects. Br J Nutr 108, 16521657.
70Westenfeld, R, Krueger, T, Schlieper, G, et al. (2012) Effect of vitamin K2 supplementation on functional vitamin K deficiency in hemodialysis patients: a randomized trial. Am J Kidney Dis 59, 186195.
71Greenland, P, Bonow, RO, Brundage, BH, et al. (2007) ACCF/AHA clinical expert consensus document on coronary artery calcium scoring by computed tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA Writing Committee to Update the 2000 Expert Consensus Document on Electron Beam Computed Tomography) developed in collaboration with the Society of Atherosclerosis Imaging and Prevention and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol 49, 378402.
72Shanahan, CM, Proudfoot, D, Farzaneh-Far, A, et al. (1998) The role of Gla proteins in vascular calcification. Crit Rev Eukaryot Gene Expr 8, 357375.
73Maas, AH, van der Schouw, YT, Beijerinck, D, et al. (2007) Vitamin K intake and calcifications in breast arteries. Maturitas 56, 273279.
74Booth, SL (1997) Skeletal functions of vitamin K-dependent proteins: not just for clotting anymore. Nutr Rev 55, 282284.
75Booth, SL, Tucker, KL, Chen, H, et al. (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71, 12011208.
76Jie, KG, Bots, ML, Vermeer, C, et al. (1996) Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int 59, 352356.
77Kaneki, M, Hodges, SJ, Hosoi, T, et al. (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17, 315321.
78Knapen, MH, Nieuwenhuijzen Kruseman, AC, Wouters, RS, et al. (1998) Correlation of serum osteocalcin fractions with bone mineral density in women during the first 10 years after menopause. Calcif Tissue Int 63, 375379.
79Luukinen, H, Kakonen, SM, Pettersson, K, et al. (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 15, 24732478.
80Schaafsma, A, Muskiet, FA, Storm, H, et al. (2000) Vitamin D(3) and vitamin K(1) supplementation of Dutch postmenopausal women with normal and low bone mineral densities: effects on serum 25-hydroxyvitamin D and carboxylated osteocalcin. Eur J Clin Nutr 54, 626631.
81Sugiyama, T & Kawai, S (2001) Carboxylation of osteocalcin may be related to bone quality: a possible mechanism of bone fracture prevention by vitamin K. J Bone Miner Metab 19, 146149.
82Szulc, P, Chapuy, MC, Meunier, PJ, et al. (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91, 17691774.
83Szulc, P, Arlot, M, Chapuy, MC, et al. (1994) Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 9, 15911595.
84Szulc, P, Chapuy, MC, Meunier, PJ, et al. (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 18, 487488.
85Vergnaud, P, Garnero, P, Meunier, PJ, et al. (1997) Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women: the EPIDOS Study. J Clin Endocrinol Metab 82, 719724.
86Kalkwarf, HJ, Khoury, JC, Bean, J, et al. (2004) Vitamin K, bone turnover, and bone mass in girls. Am J Clin Nutr 80, 10751080.
87O'Connor, E, Molgaard, C, Michaelsen, KF, et al. (2007) Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls. Br J Nutr 97, 661666.
88van Summeren, M, van Coeverden, SC, Schurgers, LJ, et al. (2008) Vitamin K status is associated with childhood bone mineral content. Br J Nutr 100, 852858.
89van, SM, Braam, L, Noirt, F, et al. (2007) Pronounced elevation of undercarboxylated osteocalcin in healthy children. Pediatr Res 61, 366370.
90Hodges, SJ, Pilkington, MJ, Stamp, TC, et al. (1991) Depressed levels of circulating menaquinones in patients with osteoporotic fractures of the spine and femoral neck. Bone 12, 387389.
91Hodges, SJ, Akesson, K, Vergnaud, P, et al. (1993) Circulating levels of vitamins K1 and K2 decreased in elderly women with hip fracture. J Bone Miner Res 8, 12411245.
92Kanai, T, Takagi, T, Masuhiro, K, et al. (1997) Serum vitamin K level and bone mineral density in post-menopausal women. Int J Gynaecol Obstet 56, 2530.
93Tamatani, M, Morimoto, S, Nakajima, M, et al. (1998) Decreased circulating levels of vitamin K and 25-hydroxyvitamin D in osteopenic elderly men. Metabolism 47, 195199.
94Tsugawa, N, Shiraki, M, Suhara, Y, et al. (2008) Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab 26, 7985.
95Katsuyama, H, Ideguchi, S, Fukunaga, M, et al. (2004) Promotion of bone formation by fermented soybean (Natto) intake in premenopausal women. J Nutr Sci Vitaminol (Tokyo) 50, 114120.
96Kanellakis, S, Moschonis, G, Tenta, R, et al. (2012) Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int 90, 251262.
97Katsuyama, H, Ideguchi, S, Fukunaga, M, et al. (2002) Usual dietary intake of fermented soybeans (Natto) is associated with bone mineral density in premenopausal women. J Nutr Sci Vitaminol (Tokyo) 48, 207215.
98Ikeda, Y, Iki, M, Morita, A, et al. (2006) Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women: Japanese Population-Based Osteoporosis (JPOS) Study. J Nutr 136, 13231328.
99Apalset, EM, Gjesdal, CG, Eide, GE, et al. (2010) Dietary vitamins K1, K2 and bone mineral density: The Hordaland Health Study. Arch Osteopor 5, 7381.
100Lips, P (2010) Worldwide status of vitamin D nutrition. J Steroid Biochem Mol Biol 121, 297300.
101Apalset, EM, Gjesdal, CG, Eide, GE, et al. (2011) Intake of vitamin K1 and K2 and risk of hip fractures: The Hordaland Health Study. Bone 49, 990995.
102Shearer, MJ (2009) Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev 23, 4959.
103Pucaj, K, Rasmussen, H, Moller, M, et al. (2011) Safety and toxicological evaluation of a synthetic vitamin K2, menaquinone-7. Toxicol Mech Methods 21, 520532.
104Ronden, JE, Groenen-van Dooren, MM, Hornstra, G, et al. (1997) Modulation of arterial thrombosis tendency in rats by vitamin K and its side chains. Atherosclerosis 132, 6167.
105Hemker, HC, AL Dieri, R, De Smeat, E, et al. (2006) Thrombin generation, a function test of the haemostatic–thrombotic system. Thromb Haemost 96, 553561.
106Holmes, MV, Hunt, BJ & Shearer, MJ (2012) The role of dietary vitamin K in the management of oral vitamin K antagonists. Blood Rev 26, 114.
107Bunyaratavej, N, Penkitti, P, Kittimanon, N, et al. (2001) Efficacy and safety of menatetrenone-4 postmenopausal Thai women. J Med Assoc Thai 84, Suppl. 2, S553S559.