Hostname: page-component-7857688df4-mqpdw Total loading time: 0 Render date: 2025-11-13T14:08:18.623Z Has data issue: false hasContentIssue false

GENTZEN’S OVERVIEW OF CALCULI AND REDUCTIONS IN CONSISTENCY PROOFS

Published online by Cambridge University Press:  11 November 2025

JAN VON PLATO*
Affiliation:
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF HELSINKI, FINLAND 00014 HELSINKI, FINLAND

Abstract

Gentzen’s sequent calculi were a part of his consistency program, the ultimate aim of which was a proof of the consistency of analysis. Among Gentzen’s series of shorthand notes there was one titled WKR in which various sequent calculi and cut elimination procedures are examined. Nothing of this series has survived, but there is instead a late summary Gentzen wrote of it in 1944. In this article, these calculi and reductions are described in the context of Gentzen’s consistency program, followed by an English translation of his manuscript that is written in what is known as the unified German shorthand (einheitliche Kurzschrift).

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bernays, P. (1965) Betrachtungen zum Sequenzen-Kalkul. In A. Tyminiecka, ed., Contributions to Logic and Methodology in Honor of J. M. Bochenski, North-Holland, pp. 144.Google Scholar
Dragalin, A. (1988) Mathematical Intuitionism: An Introduction to Proof Theory, American Mathematical Society. Translation of Russian original of 1979.Google Scholar
Gentzen, G. (1932) Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsysteme. Mathematische Annalen, vol. 107, pp. 329–250.CrossRefGoogle Scholar
Gentzen, G. (1934–35) Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, vol. 39, pp. 176210 and 405–431.CrossRefGoogle Scholar
Gentzen, G. (1935) Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie. First printed in Archiv für mathematische Logik, vol. 16 (1974), pp. 97118.CrossRefGoogle Scholar
Gentzen, G. (1936) Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen, vol. 112, pp. 493565.CrossRefGoogle Scholar
Gentzen, G. (1938) Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, vol. 4, pp. 1944.Google Scholar
Gentzen, G. (1969) The Collected Papers of Gerhard Gentzen. Szabo, M., ed, North-Holland.Google Scholar
Hämeen-Anttila, M. (2019) Nominalistic ordinals, recursion on higher types, and finitism. The Bulletin of Symbolic Logic, vol. 25, pp. 101124.CrossRefGoogle Scholar
Howard, W. (1969) The formulae-as-types notion of construction. Published in 1980, in To H. B. Curry. J. Seldin and J. Hindley, eds, Academic Press, pp. 479490.Google Scholar
Kalmár, L. (1938) Über Gentzens Beweis für die Widerspruchsfreiheit der reinen Zahlentheorie. Manuscript Hs974:105 of the Bernays collection of the ETH, 21 pages.Google Scholar
Ketonen, O. (1944) Untersuchungen zum Prädikatenkalkül. Annales Academiae Scientiarum Fennicae. Series A I. Mathematica-Physica, vol. 23.Google Scholar
Ketonen, O. (2022) Investigations into the Predicate Calculus. Edited by Negri, Sara and von Plato, Jan. Outstanding PhD Theses in Logic, College Publications.Google Scholar
Kleene, S. (1952) Introduction to Metamathematics, North-Holland.Google Scholar
Menzler-Trott, E. (2007) Logic’s Lost Genius: The Life of Gerhard Gentzen, American Mathematical Society.Google Scholar
Negri, S. and von Plato, J. (2011) Proof Analysis: A Contribution to Hilbert’s Last Problem, Cambridge.CrossRefGoogle Scholar
Negri, S. and von Plato, J. (2016) Cut elimination in sequent calculi with implicit contraction, with a conjecture on the origin of Gentzen’s altitude line construction. In Probst, D. and Schuster, P., eds, Concepts of Proof in Mathematics, Philosophy, and Computer Science, De Gruyter, pp. 269290.CrossRefGoogle Scholar
Negri, S. and von Plato, J. (2022) One bright idea: Oiva Ketonen and his logical work. In O. Ketonen, ed., Investigations into the Predicate Calculus, College Publications, pp. 123.Google Scholar
von Plato, J. (2012) Gentzen’s proof systems: Byproducts in a work of genius. The Bulletin of Symbolic Logic, vol. 18, pp. 313367.CrossRefGoogle Scholar
von Plato, J. (2017) Saved from the Cellar: Gerhard Gentzen’s Shorthand Notes on Logic and Foundations of Mathematics, Springer.CrossRefGoogle Scholar
Siders, A. (2015) A direct Gentzen-style consistency proof for Heyting arithmetic. In Kahle, R. and Rathjen, M., eds, Gentzen’s Centenary: The Quest of Consistency, Springer, pp. 177211.CrossRefGoogle Scholar
Siders, A. and von Plato, J. (2015) Bar induction in the proof of termination of Gentzen’s reduction procedure. In Kahle, R. and Rathjen, M., eds, Gentzen’s Centenary: The Quest of Consistency, Springer, pp. 127130.Google Scholar