Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.262 Render date: 2022-08-15T11:25:31.824Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

GÖDEL’S SECOND INCOMPLETENESS THEOREM: HOW IT IS DERIVED AND WHAT IT DELIVERS

Published online by Cambridge University Press:  10 June 2020

SAEED SALEHI*
Affiliation:
RESEARCH INSTITUTE FOR FUNDAMENTAL SCIENCES UNIVERSITY OF TABRIZ 29 BAHMAN BOULEVARD, P.O. BOX 51666-17766, TABRIZ, IRAN and SCHOOL OF MATHEMATICS INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES P.O. BOX 19395-5746, TEHRAN, IRAN E-mail: root@saeedsalehi.ir URL: http://saeedsalehi.ir/

Abstract

The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950), Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with each other, especially from the viewpoint of the second incompleteness theorem. It is shown that Gödel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second, or Boolos’ theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness theorem neither delivers nor is derived from the second incompleteness theorem. We compare (the strength of) these six proofs with one another.

Type
Articles
Copyright
© The Association for Symbolic Logic 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

GÖDEL’S SECOND INCOMPLETENESS THEOREM: HOW IT IS DERIVED AND WHAT IT DELIVERS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

GÖDEL’S SECOND INCOMPLETENESS THEOREM: HOW IT IS DERIVED AND WHAT IT DELIVERS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

GÖDEL’S SECOND INCOMPLETENESS THEOREM: HOW IT IS DERIVED AND WHAT IT DELIVERS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *