Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-07T21:40:38.839Z Has data issue: false hasContentIssue false

ON SEPARATE CONTINUITY AND SEPARATE CONVEXITY: A SYNTHETIC TREATMENT FOR FUNCTIONS AND SETS

Published online by Cambridge University Press:  17 July 2023

METIN UYANIK*
Affiliation:
School of Economics, University of Queensland, Brisbane, Queensland 4072, Australia
M. ALI KHAN
Affiliation:
Department of Economics, Johns Hopkins University, Baltimore, MD 21218, USA e-mail: akhan@jhu.edu

Abstract

This paper relies on nested postulates of separate, linear and arc-continuity of functions to define analogous properties for sets that are weaker than the requirement that the set be open or closed. This allows three novel characterisations of open or closed sets under convexity or separate convexity postulates: the first pertains to separately convex sets, the second to convex sets and the third to arbitrary subsets of a finite-dimensional Euclidean space. By relying on these constructions, we also obtain new results on the relationship between separate and joint continuity of separately quasiconcave, or separately quasiconvex functions. We present examples to show that the sufficient conditions we offer cannot be dispensed with.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azagra, D. and Ferrera, J., ‘Every closed convex set is the set of minimizers of some ${C}^{\infty }$ -smooth convex function’, Proc. Amer. Math. Soc. 130(12) (2002), 36873692.CrossRefGoogle Scholar
Bergstrom, T. C., Parks, R. P. and Rader, T., ‘Preferences which have open graphs’, J. Math. Econom. 3(3) (1976), 265268.CrossRefGoogle Scholar
Christensen, J. P. R., ‘Joint continuity of separately continuous functions’, Proc. Amer. Math. Soc. 82(3) (1981), 455461.CrossRefGoogle Scholar
Ciesielski, K. C. and Miller, D., ‘A continuous tale on continuous and separately continuous functions’, Real Anal. Exchange 41(1) (2016), 1954.CrossRefGoogle Scholar
Dugundji, J., Topology (Allyn and Bacon, Boston, 1966).Google Scholar
Ernst, E., ‘A converse of the Gale–Klee–Rockafellar theorem: continuity of convex functions at the boundary of their domains’, Proc. Amer. Math. Soc. 141(10) (2013), 36653672.CrossRefGoogle Scholar
Fan, K., ‘Applications of a theorem concerning sets with convex sections’, Math. Ann. 163(3) (1966), 189203.CrossRefGoogle Scholar
Gale, D., Klee, V. and Rockafellar, R., ‘Convex functions on convex polytopes’, Proc. Amer. Math. Soc. 19(4) (1968), 867873.CrossRefGoogle Scholar
Genocchi, A. and Peano, G., Calcolo Differentiale e Principii di Calcolo (Fratelli Bocca, Torino, 1884).Google Scholar
Ghosh, A., Khan, M. A. and Uyanik, M., ‘The intermediate value theorem and decision-making in psychology and economics: an expositional consolidation’, Games 13(4) (2022), 51.CrossRefGoogle Scholar
Ghosh, A., Khan, M. A. and Uyanik, M., On Continuity of Correspondences and Binary Relations: A Reconsideration of the Continuity Postulate (Johns Hopkins University, Baltimore, MD, 2023).Google Scholar
Halkin, H., ‘Necessary and sufficient condition for a convex set to be closed’, Amer. Math. Monthly 73(6) (1966), 628630.CrossRefGoogle Scholar
Herstein, I. N. and Milnor, J., ‘An axiomatic approach to measurable utility’, Econometrica 21(2) (1953), 291297.CrossRefGoogle Scholar
Kenderov, P. and Moors, W., ‘Separate continuity, joint continuity and the Lindelöf property’, Proc. Amer. Math. Soc. 134(5) (2006), 15031512.CrossRefGoogle Scholar
Klee, V., ‘Convex sets in linear spaces’, Duke Math. J. 18(2) (1951), 443466.Google Scholar
Kruse, R. L. and Deely, J. J., ‘Joint continuity of monotonic functions’, Amer. Math. Monthly 76(1) (1969), 7476.CrossRefGoogle Scholar
Namioka, I., ‘Separate and joint continuity’, Pacific J. Math. 51 (1974), 515531.CrossRefGoogle Scholar
Piotrowski, Z., ‘The genesis of separate versus joint continuity’, Tatra Mt. Math. Publ. 8 (1996), 113126.Google Scholar
Rockafellar, R. T., Convex Analysis (Princeton University Press, New York, 1970)CrossRefGoogle Scholar
Rosenthal, A., ‘On the continuity of functions of several variables’, Math. Z. 63(1) (1955), 3138.CrossRefGoogle Scholar
Russell, B., ‘Mysticism and mathematics’, in: Mysticism, Logic and Other Essays (George Allen and Unwin Ltd., London, 1917), 153154.CrossRefGoogle Scholar
Sohrab, H. H., Basic Real Analysis (Birkhaüser, Heidleberg, 2014).CrossRefGoogle Scholar
Uyanik, M. and Khan, M. A., ‘The continuity postulate in economic theory: A deconstruction and an integration’, J. Math. Econom. 101 (2022), Article no. 102704.CrossRefGoogle Scholar
Wold, H., ‘A synthesis of pure demand analysis, I–III’, Scand. Actuar. J. 26 (1943), 85118, 220–263; 27 (1944), 69–120.CrossRefGoogle Scholar
Young, W., ‘A note on monotone functions’, Quart. J. Pure Appl. Math. (Oxford Ser.) 41 (1910), 7987.Google Scholar