Hostname: page-component-7d684dbfc8-tqxhq Total loading time: 0 Render date: 2023-09-26T12:57:03.978Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false


Published online by Cambridge University Press:  30 March 2012

Institut für Mathematik, Goethe Universität, D-60054 Frankfurt am Main, Germany (email:
Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane, 19, 101447 Moscow, Russia (email:
For correspondence; e-mail:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Continuous-time discrete-state random Markov chains generated by a random linear differential equation with a random tridiagonal matrix are shown to have a random attractor consisting of singleton subsets, essentially a random path, in the simplex of probability vectors. The proof uses comparison theorems for Carathéodory random differential equations and the fact that the linear cocycle generated by the Markov chain is a uniformly contractive mapping of the positive cone into itself with respect to the Hilbert projective metric. It does not involve probabilistic properties of the sample path and is thus equally valid in the nonautonomous deterministic context of Markov chains with, say, periodically varying transition probabilities, in which case the attractor is a periodic path.

Research Article
Copyright © Australian Mathematical Publishing Association Inc. 2012


P. E. Kloeden is partially supported by DFG grant KL 1203/7-1, the Spanish Ministerio de Ciencia e Innovación project MTM2011-22411, the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under the Ayuda 2009/FQM314 and the Proyecto de Excelencia P07-FQM-02468. V. S. Kozyakin is partially supported by the Russian Foundation for Basic Research, project no. 10-01-93112.


[1]Allen, L. J. S., An Introduction to Stochastic Processes with Applications to Biology, 2nd edn (CRC Press, Boca Raton, FL, 2011).Google Scholar
[2]Arnold, L., Random Dynamical Systems, Springer Monographs in Mathematics (Springer, Berlin, 1998).CrossRefGoogle Scholar
[3]Chueshov, I., Monotone Random Systems Theory and Applications, Lecture Notes in Mathematics, 1779 (Springer, Berlin, 2002).CrossRefGoogle Scholar
[4]Hutzenthaler, A. E., Mathematical Models for Cell-cell Communication on Different Time Scales, PhD Thesis, Zentrum Mathematik, Technische Universität München, 2009.Google Scholar
[5]Kloeden, P. E. and Kozyakin, V. S., ‘Asymptotic behaviour of random tridiagonal Markov chains in biological applications’, Discrete Contin. Dyn. Syst. Ser. B. to appear.Google Scholar
[6]Kloeden, P. E. and Lorenz, J., ‘Stable attracting sets in dynamical systems and in their one-step discretizations’, SIAM J. Numer. Anal. 23(5) (1986), 986995.CrossRefGoogle Scholar
[7]Krasnosel’skiĭ, M. A., The Operator of Translation along the Trajectories of Differential Equations, Translations of Mathematical Monographs, 19 (American Mathematical Society, Providence, RI, 1968), translated from the Russian by Scripta Technica.Google Scholar
[8]Krasnosel’skij, M. A., Lifshits, Je. A. and Sobolev, A. V., Positive Linear Systems: The Method of Positive Operators, Sigma Series in Applied Mathematics, 5 (Heldermann, Berlin, 1989), translated from the Russian by Jürgen Appell.Google Scholar
[9]Nussbaum, R. D., ‘Some nonlinear weak ergodic theorems’, SIAM J. Math. Anal. 21(2) (1990), 436460.CrossRefGoogle Scholar
[10]Nussbaum, R. D., ‘Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations’, Differ. Integral Equ. 7(5–6) (1994), 16491707.Google Scholar
[11]Smith, H. L., Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41 (American Mathematical Society, Providence, RI, 1995).Google Scholar
[12]Stuart, A. M. and Humphries, A. R., Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, 2 (Cambridge University Press, Cambridge, 1996).Google Scholar
[13]Szarski, J., Differential Inequalities, Monografie Matematyczne, Tom 43 (Państwowe Wydawnictwo Naukowe, Warsaw, 1965).Google Scholar
[14]Walter, W., ‘Differential inequalities’, in: Inequalities (Birmingham, 1987), Lecture Notes in Pure and Applied Mathematics, 129 (Dekker, New York, 1991), pp. 249283.Google Scholar
[15]Wodarz, D. and Komarova, N., Computational Biology of Cancer: Lecture Notes and Mathematical Modeling (World Scientific, Singapore, 2005).CrossRefGoogle Scholar