We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Napoli, Italy email annavalentina.deluca@unina.it
GIOVANNA DI GRAZIA
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, I 80126 Napoli, Italy email giovanna.digrazia@unina.it
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Groups of infinite rank in which every subgroup is either normal or contranormal are characterised in terms of their subgroups of infinite rank.
De Falco, M., de Giovanni, F. and Musella, C., ‘Groups with finitely many conjugacy classes of non-normal subgroups of infinite rank’, Colloq. Math.131 (2013), 233–239.Google Scholar
[2]
De Falco, M., de Giovanni, F. and Musella, C., ‘Groups whose proper subgroups of infinite rank have a transitive normality relation’, Mediterr. J. Math.10 (2013), 1999–2006.Google Scholar
[3]
De Falco, M., de Giovanni, F., Musella, C. and Sysak, Y. P., ‘Groups of infinite rank in which normality is a transitive relation’, Glasg. Math. J.56 (2014), 387–393.CrossRefGoogle Scholar
[4]
De Falco, M., de Giovanni, F., Musella, C. and Sysak, Y. P., ‘On metahamiltonian groups of infinite rank’, J. Algebra407 (2014), 135–148.CrossRefGoogle Scholar
[5]
De Falco, M., de Giovanni, F., Musella, C. and Trabelsi, N., ‘Groups with restrictions on subgroups of infinite rank’, Rev. Mat. Iberoam.30(2) (2014), 535–548.Google Scholar
[6]
De Falco, M., Kurdachenko, L. A. and Subbotin, I. Ya., ‘Groups with only abnormal and subnormal subgroups’, Atti Semin. Mat. Fis. Univ. Modena46 (1998), 435–442.Google Scholar
[7]
Dixon, M. R., Evans, M. J. and Smith, H., ‘Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank’, J. Pure Appl. Algebra135 (1999), 33–43.Google Scholar
[8]
Evans, M. J. and Kim, Y., ‘On groups in which every subgroup of infinite rank is subnormal of bounded defect’, Comm. Algebra32 (2004), 2547–2557.Google Scholar
[9]
Kurdachenko, L. A. and Smith, H., ‘Groups in which all subgroups of infinite rank are subnormal’, Glasg. Math. J.46 (2004), 83–89.CrossRefGoogle Scholar
[10]
Malcev, A. I., ‘On some classes of infinite soluble groups’, Mat. Sbornik N. S.28 (1951), 567–588; Amer. Math. Soc. Transl. Ser. 2 (1956), 1–21.Google Scholar
[11]
Robinson, D. J. S., A Course in the Theory of Groups (Springer, New York, 1996).Google Scholar
[12]
Robinson, D. J. S., Finiteness Conditions and Generalized Soluble Group (Springer, New York–Berlin, 1972).Google Scholar
[13]
Rose, J. S., ‘Finite soluble groups with pronormal system normalizers’, Proc. Lond. Math. Soc. (3)17 (1967), 447–469.Google Scholar
[14]
Subbotin, I. Ya., ‘Groups with alternatively normal subgroups’, Russian Math.36 (1992), 87–89.Google Scholar