Skip to main content Accessibility help



Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}K$ be a locally compact hypergroup endowed with a left Haar measure and let $L^1(K)$ be the usual Lebesgue space of $K$ with respect to the left Haar measure. We investigate some properties of $L^1(K)$ under a locally convex topology $\beta ^1$ . Among other things, the semireflexivity of $(L^1(K), \beta ^1)$ and of sequentially $\beta ^1$ -continuous functionals is studied. We also show that $(L^1(K), \beta ^1)$ with the convolution multiplication is always a complete semitopological algebra, whereas it is a topological algebra if and only if $K$ is compact.

Corresponding author
Hide All
[1]Bloom, W. R. and Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter Studies in Mathematics, 20 (Walter de Gruyter, Berlin, 1995).
[2]Dunkl, C. F., ‘The measure algebra of a locally compact hypergroup’, Trans. Amer. Math. Soc. 179 (1973), 331348.
[3]Ghaffari, A., ‘Convolution operators on the dual of hypergroup algebras’, Comment. Math. Univ. Carolin. 44 (2003), 669679.
[4]Grosser, M., Bidualräume und Vervollständigungen von Banachmoduln, Lecture Notes in Mathematics, 717 (Springer, Berlin, 1979).
[5]Hewitt, E. and Stromberg, K., Real and Abstract Analysis (Springer, New York, 1975).
[6]Jewett, R. I., ‘Spaces with an abstract convolution of measures’, Adv. Math. 18 (1975), 1101.
[7]Khan, L. A., ‘Topological modules of continuous homomorphisms’, J. Math. Anal. Appl. 343 (2008), 141150.
[8]Khan, L. A., ‘The general strict topology on topological modules’, in: Function Spaces, Contemporary Mathematics, 435 (American Mathematical Society, Providence, RI, 2007), 253263.
[9]Khan, L. A., Mohammad, N. and Thaheem, A. B., ‘The strict topology on topological algebras’, Demonstratio Math. 38 (2005), 883894.
[10]Litvinov, G. L., ‘Hypergroups and hypergroup algebras’, J. Sov. Math. 38 (1987), 17341761.
[11]Maghsoudi, S., ‘The space of vector-valued integrable functions under certain locally convex topologies’, Math. Nachr. 286 (2013), 260271.
[12]Maghsoudi, S. and Nasr-Isfahani, R., ‘Strict topology as a mixed topology on Lebesgue spaces’, Bull. Aust. Math. Soc. 84 (2011), 504515.
[13]Maghsoudi, S., Nasr-Isfahani, R. and Rejali, A., ‘The dual of semigroup algebras with certain locally convex topologies’, Semigroup Forum 73 (2006), 367376.
[14]Sentilles, F. D., ‘The strict topology on bounded sets’, Pacific J. Math. 34 (1970), 529540.
[15]Sentilles, F. D. and Taylor, D., ‘Factorization in Banach algebras and the general strict topology’, Trans. Amer. Math. Soc. 142 (1969), 141152.
[16]Shantha, K. V., ‘The general strict topology in locally convex modules over locally convex algebras II’, Ital. J. Pure Appl. Math. 17 (2005), 2132.
[17]Shantha, K. V., ‘The general strict topology in locally convex modules over locally convex algebras I’, Ital. J. Pure Appl. Math. 16 (2004), 211226.
[18]Singh, A. I., ‘L 0(G) as the second dual of the group algebra L 1(G) with a locally convex topology’, Michigan Math. J. 46 (1999), 143150.
[19]Swartz, C., An Introduction to Functional Analysis, Pure and Applied Mathematics, 157 (Marcel Dekker, New York, 1992).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed