Skip to main content
×
×
Home

ON THE EXISTENCE OF FINITE CRITICAL TRAJECTORIES IN A FAMILY OF QUADRATIC DIFFERENTIALS

  • FAOUZI THABET (a1)
Abstract

We discuss the existence of finite critical trajectories connecting two zeros in certain families of quadratic differentials. In addition, we reprove some results about the support of the limiting root-counting measures of the generalised Laguerre and Jacobi polynomials with varying parameters.

Copyright
References
Hide All
[1] Atia, M. J., Martinez-Finkelshtein, A., Martinez-Gonzalez, P. and Thabet, F., ‘Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters’, J. Math. Anal. Appl. 416 (2014), 5280.
[2] Bagrov, V. G. and Gitman, D. M., Exact Solutions of Relativistic Wave Equations (Kluwer Academic Publications, Dordrecht, 1990).
[3] Gonchar, A. A. and Rakhmanov, E. A., ‘Equilibrium measure and the distribution of zeros of extremal polynomials’, Mat. Sb. 53 (1986), 119130.
[4] Kuijlaars, A. B. J. and Martinez-Finkelshtein, A., ‘Strong asymptotics for Jacobi polynomials with varying nonstandard parameters’, J. Anal. Math. 94 (2004), 195234.
[5] Kuijlaars, A. B. J., Martinez-Finkelshtein, A. and Orive, R., ‘Orthogonality of Jacobi polynomials with general parameters’, Electron. Trans. Numer. Anal. 19 (2005), 117.
[6] Kuijlaars, A. B. J. and McLaughlin, K. T.-R., ‘Asymptotic zero behavior of Laguerre polynomials with negative parameter’, Constr. Approx. 20(4) (2004), 497523.
[7] Martinez-Finkelshtein, A., Martinez-Gonzalez, P. and Orive, R., ‘On asymptotic zero distribution of Laguerre and generalized Bessel polynomials with varying parameters’, J. Comput. Appl. Math. 133 (2001), 477487.
[8] Martinez-Finkelshtein, A., Martinez-Gonzalez, P. and Thabet, F., ‘Trajectories of quadratic differentials for Jacobi polynomials with complex parameters’, Comput. Methods Funct. Theory, to appear. Published online (8 December 2015). doi:10.1007/s40315-015-0146-7.
[9] Shapiro, B., ‘On Evgrafov-Fedoryuk’s theory and quadratic differentials’, Anal. Math. Phys. 5 (2015), 171181.
[10] Stahl, H., ‘Orthogonal polynomials with complex-valued weight function. I, II’, Constr. Approx. 2(3) (1986), 225251.
[11] Strebel, K., Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 5 (Springer, Berlin, 1984).
[12] Szego, G., Orthogonal Polynomials, 4th edn, American Mathematical Society Colloquium Publications, 23 (American Mathematical Society, Providence, RI, 1975).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed