Skip to main content

Marcinkiewicz Multipliers and Lipschitz Spaces on Heisenberg Groups

  • Yanchang Han (a1), Yongsheng Han (a2), Ji Li (a3) and Chaoqiang Tan (a4)

The Marcinkiewicz multipliers are $L^{p}$ bounded for $1<p<\infty$ on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ (Müller, Ricci, and Stein). This is surprising in the sense that these multipliers are invariant under a two parameter group of dilations on $\mathbb{C}^{n}\times \mathbb{R}$ , while there is no two parameter group of automorphic dilations on $\mathbb{H}^{n}$ . The purpose of this paper is to establish a theory of the flag Lipschitz space on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ that is, in a sense, intermediate between that of the classical Lipschitz space on the Heisenberg group $\mathbb{H}^{n}$ and the product Lipschitz space on $\mathbb{C}^{n}\times \mathbb{R}$ . We characterize this flag Lipschitz space via the Littlewood–Paley theory and prove that flag singular integral operators, which include the Marcinkiewicz multipliers, are bounded on these flag Lipschitz spaces.

Corresponding author
*Ji Li is the corresponding author.
Hide All

The first author is supported by National Natural Science Foundation of China (Grant No. 11471338) and Guangdong Province Natural Science Foundation (Grant No. 2017A030313028); The third author is supported by the Australian Research Council under Grant No. ARC-DP160100153 and by Macquarie University Seeding Grant.

Hide All
[1] Carleson, L., A counterexample for measures bounded on H p for the bidisc. Mittag-Leffler Report, 7, 1974.
[2] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces . Geom. Funct. Anal. 9(1999), no. 3, 428517.
[3] Chang, S-Y. A., Carleson measures on the bi-disc . Ann. of Math. 109(1979), 613620.
[4] Chang, S-Y. A. and Fefferman, R., Some recent developments in Fourier analysis and H p theory on product domains . Bull. Amer. Math. Soc. 12(1985), 143.
[5] Chang, S-Y. A. and Fefferman, R., The Calderón–Zygmund decomposition on product domains . Amer. J. Math. 104(1982), 455468.
[6] Chang, S-Y. A. and Fefferman, R., A continuous version of duality of H 1 with BMO on the bidisc . Ann. of Math. 112(1980), 179201.
[7] Fefferman, C. and Stein, E. M., H p spaces of several variables . Acta Math. 129(1972), 137193.
[8] Fefferman, R., Multi-parameter Fourier analysis . Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., 112, Princeton University Press, Princeton, NJ, 1986, pp. 47130.
[9] Fefferman, R., Harmonic analysis on product spaces . Ann. of Math. 126(1987), 109130.
[10] Fefferman, R., Multiparameter Calderón–Zygmund theory . In: Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 207221.
[11] Fefferman, R., Singular integrals on product spaces . Adv. Math. 45(1982), 117143.
[12] Geller, D. and Mayeli, A., Continuous wavelets and frames on stratified Lie groups . I. J. Fourier Anal. Appl. 12(2006), 543579.
[13] Gundy, R. and Stein, E. M., H p theory for the polydisk . Proc. Nat. Acad. Sci. 76(1979), no. 3, 10261029.
[14] Han, Y., Lu, G., and Sawyer, E., Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group . Anal. PDE 7(2014), no. 7, 14651534.
[15] Harboure, E., Salinas, O., and Viviani, B., Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces . Trans. Amer. Math. Soc. 349(1997), no. 1, 235255.
[16] Jansono, S., Taibleson, M., and Weiss, G., Elementary characterizations of the Morrey-Campanato spaces . In: Harmonic analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 101114.
[17] Journé, J. L., Calderón–Zygmund operators on product spaces . Rev. Mat. Iberoamericana 1(1985), 5591.
[18] Journé, J. L., A covering lemma for product spaces . Proc. Amer. Math. Soc. 96(1986), 593598.
[19] Journé, J. L., Two problems of Calderón–Zygmund theory on product spaces . Ann. Inst. Fourier(Grenoble) 38(1988), 111132.
[20] Krantz, S. G., Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups . J. Funct. Anal. 34(1979), no. 3, 456471.
[21] Krantz, S. G., Lipschitz spaces on stratified groups . Trans. Amer. Math. Soc. 269(1982), no. 1, 3966.
[22] Madych, W. R. and Rivière, N. M., Multiplies of the Hölder classes . J. Funct. Anal. 21(1976), no. 4, 369379.
[23] Müller, D., Ricci, F., and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups. I . Invent. Math. 119(1995), 119233.
[24] Müller, D., Ricci, F., and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups. II . Math. Z. 221(1996), 267291.
[25] Nagel, A., Ricci, F., and Stein, E. M., Singular integrals with flag kernels and analysis on quadratic CR manifolds . J. Func. Anal. 181(2001), 29118.
[26] Nagel, A., Ricci, F., Stein, E. M., and Wainger, S., Singular integrals with flag kernels on homogeneous groups. I . Rev. Mat. Iberoam. 28(2012), 631722.
[27] Nagel, A., Ricci, F., Stein, E. M., and Wainger, S., Algebras of singular integral operators with kernels controlled by multiple norms. arxiv:1511.05702.
[28] Phong, D. H. and Stein, E. M., Some further classes of pseudo-differential and singular integral operators arising in boundary valve problems. I. composition of operators . Amer. J. Math. 104(1982), 141172.
[29] Pipher, J., Journé’s covering lemma and its extension to higher dimensions . Duke Math. J. 53(1986), 683690.
[30] Stein, E. M., Singular integral and differentiability properties of functions. Princeton Univ. Press 30(1970).
[31] Stein, E. M., Singular integrals and estimates for the Cauchy-Riemann equations . Bull. Amer. Math. Soc. 79(1973), no. 2, 440445.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed