Skip to main content
×
×
Home

Marcinkiewicz Multipliers and Lipschitz Spaces on Heisenberg Groups

  • Yanchang Han (a1), Yongsheng Han (a2), Ji Li (a3) and Chaoqiang Tan (a4)
Abstract

The Marcinkiewicz multipliers are $L^{p}$ bounded for $1<p<\infty$ on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ (Müller, Ricci, and Stein). This is surprising in the sense that these multipliers are invariant under a two parameter group of dilations on $\mathbb{C}^{n}\times \mathbb{R}$ , while there is no two parameter group of automorphic dilations on $\mathbb{H}^{n}$ . The purpose of this paper is to establish a theory of the flag Lipschitz space on the Heisenberg group $\mathbb{H}^{n}\simeq \mathbb{C}^{n}\times \mathbb{R}$ that is, in a sense, intermediate between that of the classical Lipschitz space on the Heisenberg group $\mathbb{H}^{n}$ and the product Lipschitz space on $\mathbb{C}^{n}\times \mathbb{R}$ . We characterize this flag Lipschitz space via the Littlewood–Paley theory and prove that flag singular integral operators, which include the Marcinkiewicz multipliers, are bounded on these flag Lipschitz spaces.

Copyright
Corresponding author
*Ji Li is the corresponding author.
Footnotes
Hide All

The first author is supported by National Natural Science Foundation of China (Grant No. 11471338) and Guangdong Province Natural Science Foundation (Grant No. 2017A030313028); The third author is supported by the Australian Research Council under Grant No. ARC-DP160100153 and by Macquarie University Seeding Grant.

Footnotes
References
Hide All
[1] Carleson, L., A counterexample for measures bounded on H p for the bidisc. Mittag-Leffler Report, 7, 1974.
[2] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces . Geom. Funct. Anal. 9(1999), no. 3, 428517. https://doi.org/10.1007/s000390050094.
[3] Chang, S-Y. A., Carleson measures on the bi-disc . Ann. of Math. 109(1979), 613620. https://doi.org/10.2307/1971229.
[4] Chang, S-Y. A. and Fefferman, R., Some recent developments in Fourier analysis and H p theory on product domains . Bull. Amer. Math. Soc. 12(1985), 143. https://doi.org/10.1090/S0273-0979-1985-15291-7.
[5] Chang, S-Y. A. and Fefferman, R., The Calderón–Zygmund decomposition on product domains . Amer. J. Math. 104(1982), 455468. https://doi.org/10.2307/2374150.
[6] Chang, S-Y. A. and Fefferman, R., A continuous version of duality of H 1 with BMO on the bidisc . Ann. of Math. 112(1980), 179201. https://doi.org/10.2307/1971324.
[7] Fefferman, C. and Stein, E. M., H p spaces of several variables . Acta Math. 129(1972), 137193. https://doi.org/10.1007/BF02392215.
[8] Fefferman, R., Multi-parameter Fourier analysis . Beijing Lectures in Harmonic Analysis, Ann. of Math. Stud., 112, Princeton University Press, Princeton, NJ, 1986, pp. 47130.
[9] Fefferman, R., Harmonic analysis on product spaces . Ann. of Math. 126(1987), 109130. https://doi.org/10.2307/1971346.
[10] Fefferman, R., Multiparameter Calderón–Zygmund theory . In: Harmonic analysis and partial differential equations (Chicago, IL, 1996), Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999, pp. 207221.
[11] Fefferman, R., Singular integrals on product spaces . Adv. Math. 45(1982), 117143. https://doi.org/10.1016/S0001-8708(82)80001-7.
[12] Geller, D. and Mayeli, A., Continuous wavelets and frames on stratified Lie groups . I. J. Fourier Anal. Appl. 12(2006), 543579. https://doi.org/10.1007/s00041-006-6002-4.
[13] Gundy, R. and Stein, E. M., H p theory for the polydisk . Proc. Nat. Acad. Sci. 76(1979), no. 3, 10261029. https://doi.org/10.1073/pnas.76.3.1026.
[14] Han, Y., Lu, G., and Sawyer, E., Flag Hardy spaces and Marcinkiewicz multipliers on the Heisenberg group . Anal. PDE 7(2014), no. 7, 14651534. https://doi.org/10.2140/apde.2014.7.1465.
[15] Harboure, E., Salinas, O., and Viviani, B., Boundedness of the fractional integral on weighted Lebesgue and Lipschitz spaces . Trans. Amer. Math. Soc. 349(1997), no. 1, 235255. https://doi.org/10.1090/S0002-9947-97-01644-9.
[16] Jansono, S., Taibleson, M., and Weiss, G., Elementary characterizations of the Morrey-Campanato spaces . In: Harmonic analysis (Cortona, 1982), Lecture Notes in Math., 992, Springer, Berlin, 1983, pp. 101114.
[17] Journé, J. L., Calderón–Zygmund operators on product spaces . Rev. Mat. Iberoamericana 1(1985), 5591. https://doi.org/10.4171/RMI/15.
[18] Journé, J. L., A covering lemma for product spaces . Proc. Amer. Math. Soc. 96(1986), 593598. https://doi.org/10.1090/S0002-9939-1986-0826486-9.
[19] Journé, J. L., Two problems of Calderón–Zygmund theory on product spaces . Ann. Inst. Fourier(Grenoble) 38(1988), 111132. https://doi.org/10.5802/aif.1125.
[20] Krantz, S. G., Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups . J. Funct. Anal. 34(1979), no. 3, 456471. https://doi.org/10.1016/0022-1236(79)90087-9.
[21] Krantz, S. G., Lipschitz spaces on stratified groups . Trans. Amer. Math. Soc. 269(1982), no. 1, 3966. https://doi.org/10.1090/S0002-9947-1982-0637028-6.
[22] Madych, W. R. and Rivière, N. M., Multiplies of the Hölder classes . J. Funct. Anal. 21(1976), no. 4, 369379. https://doi.org/10.1016/0022-1236(76)90032-X.
[23] Müller, D., Ricci, F., and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups. I . Invent. Math. 119(1995), 119233. https://doi.org/10.1007/BF01245180.
[24] Müller, D., Ricci, F., and Stein, E. M., Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) groups. II . Math. Z. 221(1996), 267291. https://doi.org/10.1007/BF02622116.
[25] Nagel, A., Ricci, F., and Stein, E. M., Singular integrals with flag kernels and analysis on quadratic CR manifolds . J. Func. Anal. 181(2001), 29118. https://doi.org/10.1006/jfan.2000.3714.
[26] Nagel, A., Ricci, F., Stein, E. M., and Wainger, S., Singular integrals with flag kernels on homogeneous groups. I . Rev. Mat. Iberoam. 28(2012), 631722. https://doi.org/10.4171/RMI/688.
[27] Nagel, A., Ricci, F., Stein, E. M., and Wainger, S., Algebras of singular integral operators with kernels controlled by multiple norms. arxiv:1511.05702.
[28] Phong, D. H. and Stein, E. M., Some further classes of pseudo-differential and singular integral operators arising in boundary valve problems. I. composition of operators . Amer. J. Math. 104(1982), 141172. https://doi.org/10.2307/2374071.
[29] Pipher, J., Journé’s covering lemma and its extension to higher dimensions . Duke Math. J. 53(1986), 683690. https://doi.org/10.1215/S0012-7094-86-05337-8.
[30] Stein, E. M., Singular integral and differentiability properties of functions. Princeton Univ. Press 30(1970).
[31] Stein, E. M., Singular integrals and estimates for the Cauchy-Riemann equations . Bull. Amer. Math. Soc. 79(1973), no. 2, 440445. https://doi.org/10.1090/S0002-9904-1973-13205-7.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Mathematics
  • ISSN: 0008-414X
  • EISSN: 1496-4279
  • URL: /core/journals/canadian-journal-of-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed