Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Silverman, Joseph H.
1986.
Arithmetic Geometry.
p.
253.
Edixhoven, Bas
1991.
Arithmetic Algebraic Geometry.
p.
25.
Flach, Matthias
1992.
A finiteness theorem for the symmetric square of an elliptic curve.
Inventiones Mathematicae,
Vol. 109,
Issue. 1,
p.
307.
Cremona, J. E.
1994.
Algorithmic Number Theory.
Vol. 877,
Issue. ,
p.
134.
Abbes, Ahmed
and
Ullmo, Emmanuel
1995.
Comparaison des métriques d’Arakelov et de Poincaré sur X0(N).
Duke Mathematical Journal,
Vol. 80,
Issue. 2,
Gekeler, Ernst-Ulrich
1995.
Analytical construction of Weil curves over function fields.
Journal de théorie des nombres de Bordeaux,
Vol. 7,
Issue. 1,
p.
27.
Cremona, J. E.
1995.
Computing the degree of the modular parametrization of a modular elliptic curve.
Mathematics of Computation,
Vol. 64,
Issue. 211,
p.
1235.
Ribet, Kenneth A.
and
Takahashi, Shuzo
1997.
Parametrizations of elliptic curves by Shimura curves and by classical modular curves.
Proceedings of the National Academy of Sciences,
Vol. 94,
Issue. 21,
p.
11110.
Merel, Loïc
1999.
Arithmetic of elliptic curves and diophantine equations.
Journal de théorie des nombres de Bordeaux,
Vol. 11,
Issue. 1,
p.
173.
Frey, Gerhard
and
Müller, Michael
1999.
Algorithmic Algebra and Number Theory.
p.
11.
Lascurain Orive, Antonio
1999.
The shape of the Ford domains for Γ₀(𝑁).
Conformal Geometry and Dynamics of the American Mathematical Society,
Vol. 3,
Issue. 1,
p.
1.
Takahashi, Shuzo
2001.
Degrees of Parametrizations of Elliptic Curves by Shimura Curves.
Journal of Number Theory,
Vol. 90,
Issue. 1,
p.
74.
Watkins, Mark
2002.
Computing the Modular Degree of an Elliptic Curve.
Experimental Mathematics,
Vol. 11,
Issue. 4,
p.
487.
Delaunay, Christophe
2003.
Computing modular degrees using L-functions.
Journal de théorie des nombres de Bordeaux,
Vol. 15,
Issue. 3,
p.
673.
Bertolini, Massimo
and
Darmon, Henri
2004.
A Birch and Swinnerton-Dyer conjecture for the Mazur-Tate circle pairing.
Duke Mathematical Journal,
Vol. 122,
Issue. 1,
Papikian, Mihran
2004.
On component groups of Jacobians of Drinfeld modular curves.
Annales de l'Institut Fourier,
Vol. 54,
Issue. 7,
p.
2163.
Papanikolas, Matthew A.
and
Ramachandran, Niranjan
2005.
Extensions of abelian varieties defined over a number field.
Journal of Number Theory,
Vol. 112,
Issue. 2,
p.
386.
Dummigan, Neil
2008.
On a conjecture of Watkins.
Journal de théorie des nombres de Bordeaux,
Vol. 18,
Issue. 2,
p.
345.
Delaunay, Christophe
2008.
Critical and ramification points of the modular parametrization of an elliptic curve.
Journal de théorie des nombres de Bordeaux,
Vol. 17,
Issue. 1,
p.
109.
Calegari, Frank
and
Emerton, Matthew
2009.
Elliptic curves of odd modular degree.
Israel Journal of Mathematics,
Vol. 169,
Issue. 1,
p.
417.
have a "modular parametrization," i.e. for some