No CrossRef data available.
Published online by Cambridge University Press: 09 January 2025
In this article, we generalize results of Clozel and Ray (for  $SL_2$ and
$SL_2$ and  $SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group
$SL_n$, respectively) to give explicit ring-theoretic presentation in terms of a complete set of generators and relations of the Iwasawa algebra of the pro-p Iwahori subgroup of a simple, simply connected, split group  $\mathbf {G}$ over
$\mathbf {G}$ over  ${{\mathbb Q}_p}$.
${{\mathbb Q}_p}$.
The second author is supported by the Inspire Research Grant, Department of Science and Technology, Govt. of India.
 ${\varGamma}_1 SL(2,{\mathbb{Z}}_p)$
. Doc. Math. 16(2011), 545–559.CrossRefGoogle Scholar
${\varGamma}_1 SL(2,{\mathbb{Z}}_p)$
. Doc. Math. 16(2011), 545–559.CrossRefGoogle Scholar $p$
-adic representations of the pro-
$p$
-adic representations of the pro-
 $p$
-Iwahori subgroup of
$p$
-Iwahori subgroup of 
 $GL(2)$
and base change, I: Iwasawa algebras and a base change map. Bull. Iranian Math. Soc. 43(2017), no. 4, 55–76.Google Scholar
$GL(2)$
and base change, I: Iwasawa algebras and a base change map. Bull. Iranian Math. Soc. 43(2017), no. 4, 55–76.Google Scholar $p$
-adic representations of the pro-
$p$
-adic representations of the pro-
 $p$
Iwahori subgroup of
$p$
Iwahori subgroup of
 $GL(2)$
and base change, II: A Steinberg tensor product theorem
. In: J. W. Cogdell, G. Harder, S. Kudla, F. Shahidi (eds.), Cohomology of arithmetic groups, Springer Proceedings in Mathematics and Statistics, 245, Springer, Cham, 2018, pp. 1–33.Google Scholar
$GL(2)$
and base change, II: A Steinberg tensor product theorem
. In: J. W. Cogdell, G. Harder, S. Kudla, F. Shahidi (eds.), Cohomology of arithmetic groups, Springer Proceedings in Mathematics and Statistics, 245, Springer, Cham, 2018, pp. 1–33.Google Scholar $p$
groups, 2nd ed., Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge, 1999.Google Scholar
$p$
groups, 2nd ed., Cambridge Studies in Advanced Mathematics, 61, Cambridge University Press, Cambridge, 1999.Google Scholar $p$
-adic principal series representations. Isr. J. Math. 259 (2024), 427–459. https://doi.org/10.1007/s11856-023-2495-7.CrossRefGoogle Scholar
$p$
-adic principal series representations. Isr. J. Math. 259 (2024), 427–459. https://doi.org/10.1007/s11856-023-2495-7.CrossRefGoogle Scholar $p$
Iwahori–Hecke Ext-algebra. In: A. Aizenbud, D. Gourevitch, D. Kazhdan, E. M. Lapid (eds.), Representations of reductive groups, Proceedings of Symposia in Pure Mathematics, 101, American Mathematical Society, Providence, RI, 2019, pp 255–308.CrossRefGoogle Scholar
$p$
Iwahori–Hecke Ext-algebra. In: A. Aizenbud, D. Gourevitch, D. Kazhdan, E. M. Lapid (eds.), Representations of reductive groups, Proceedings of Symposia in Pure Mathematics, 101, American Mathematical Society, Providence, RI, 2019, pp 255–308.CrossRefGoogle Scholar $p$
Iwahori subgroup of
$p$
Iwahori subgroup of 
 $\mathrm{SL}_n({\mathbb{Z}}_p)$
. Forum Math. 32(2020), no. 2, 319–338.CrossRefGoogle Scholar
$\mathrm{SL}_n({\mathbb{Z}}_p)$
. Forum Math. 32(2020), no. 2, 319–338.CrossRefGoogle Scholar $p$
-adic Lie groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],344, Springer, Heidelberg, 2011.CrossRefGoogle Scholar
$p$
-adic Lie groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],344, Springer, Heidelberg, 2011.CrossRefGoogle Scholar $p$
. Preprint, 2021. arXiv:2101.06295.Google Scholar
$p$
. Preprint, 2021. arXiv:2101.06295.Google Scholar