Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-5wlnc Total loading time: 0.185 Render date: 2021-08-01T06:29:32.195Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Existence of Spanning ℱ-Free Subgraphs with Large Minimum Degree

Published online by Cambridge University Press:  07 December 2016

G. PERARNAU
Affiliation:
School of Mathematics, University of Birmingham, United Kingdom (e-mail: g.perarnau@bham.ac.uk)
B. REED
Affiliation:
School of Computer Science, McGill University, Canada and Kawarabayashi Large Graph Project, National Institute of Informatics, Japan (e-mail: breed@mcgill.ca)
Corresponding

Abstract

Let ℱ be a family of graphs and let d be large enough. For every d-regular graph G, we study the existence of a spanning ℱ-free subgraph of G with large minimum degree. This problem is well understood if ℱ does not contain bipartite graphs. Here we provide asymptotically tight results for many families of bipartite graphs such as cycles or complete bipartite graphs. To prove these results, we study a locally injective analogue of the question.

Type
Paper
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alon, N., Rónyai, L. and Szabó, T. (1999) Norm-graphs: Variations and applications. J. Combin. Theory Ser. B 76 280290.CrossRefGoogle Scholar
[2] Brown, W. G. (1966) On graphs that do not contain a Thomsen graph. Canad. Math. Bull. 9 12.CrossRefGoogle Scholar
[3] Conlon, D., Fox, J. and Sudakov, B. (2016) Short proofs of some extremal results II. J. Combin. Theory Ser. B 121 173196.CrossRefGoogle Scholar
[4] Delcourt, M. and Ferber, A. (2015) On a conjecture of Thomassen. Electron. J. Combin. 22 P3.2.Google Scholar
[5] Erdős, P. (1959) Graph theory and probability I. Canad. J. Math. 11 3438.CrossRefGoogle Scholar
[6] Erdős, P. (1961) Graph theory and probability II. Canad. J. Math. 13 346352.CrossRefGoogle Scholar
[7] Erdős, P. (1968) Problem 1. In Theory of Graphs: Proc. Colloq. Tihany 1966, Academic Press, pp. 361362.Google Scholar
[8] Erdős, P., Rényi, A. and Sós, V. T. (1966) On a problem of graph theory. Studia Sci. Math. Hungar. 1 215235.Google Scholar
[9] Erdős, P. and Simonovits, M. (1970) Some extremal problems in graph theory. In Combinatorial Theory and its Applications, I: Proc. Colloq., Balatonfüred, 1969, North-Holland, pp. 377390.Google Scholar
[10] Foucaud, F., Krivelevich, M. and Perarnau, G. (2015) Large subgraphs without short cycles. SIAM J. Discrete Math. 29 6578.CrossRefGoogle Scholar
[11] Füredi, Z. and Simonovits, M. (2013) The history of degenerate (bipartite) extremal graph problems. In Erdős Centennial, Vol. 25 of Bolyai Society Mathematical Studies, Springer, pp. 169264.CrossRefGoogle Scholar
[12] Kollár, J., Rónyai, L. and Szabó, T. (1996) Norm-graphs and bipartite Turán numbers. Combinatorica 16 399406.CrossRefGoogle Scholar
[13] Kővári, T., Sós, V. T. and Turán, P. (1954) On a problem of K. Zarankiewicz. Colloquium Math. 3 5057.Google Scholar
[14] Kühn, D. and Osthus, D. (2004) Every graph of sufficiently large average degree contains a C 4-free subgraph of large average degree. Combinatorica 24 155162.CrossRefGoogle Scholar
[15] Kun, G. (2013) Expanders have a spanning Lipschitz subgraph with large girth. arXiv:1303.4982 Google Scholar
[16] Lam, T. and Verstraëte, J. (2005) A note on graphs without short even cycles. Electron. J. Combin. 12 paper 5.Google Scholar
[17] Lazebnik, F., Ustimenko, V. A. and Woldar, A. J. (1999) Polarities and 2k-cycle-free graphs. Discrete Math. 197 503513.CrossRefGoogle Scholar
[18] Molloy, M. and Reed, B. (2002) Graph Colouring and the Probabilistic Method , Vol. 23 of Algorithms and Combinatorics, Springer.Google Scholar
[19] Thomassen, C. (1983) Girth in graphs. J. Combin. Theory Ser. B 35 129141.CrossRefGoogle Scholar
[20] Thomassen, C. (1989) Configurations in graphs of large minimum degree, connectivity, or chromatic number. Ann. New York Acad. Sci. 555 402412.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Existence of Spanning ℱ-Free Subgraphs with Large Minimum Degree
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Existence of Spanning ℱ-Free Subgraphs with Large Minimum Degree
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Existence of Spanning ℱ-Free Subgraphs with Large Minimum Degree
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *