[1]
Aichholzer, O., Hackl, T., Vogtenhuber, B., Huemer, C.
Hurtado, F. and Krasser, H. (2007) On the number of plane geometric graphs. Graphs Combin.
23
67–84.

[2]
Ajtai, M., Chvátal, V., Newborn, M. and Szemerédi, E. (1982) Crossing-free subgraphs. Ann. Discrete Math.
12
9–12.

[3]
Alvarez, V., Bringmann, K., Ray, S. and Seidel, R. (2015) Counting triangulations and other crossing-free structures approximately. Comput. Geom. Theory Appl.
48
386–397.

[4]
Alvarez, V. and Seidel, R. (2013) A simple aggregative algorithm for counting triangulations of planar point sets and related problems. In *Proc. 29th Symposium on Computational Geometry (SoCG)*, ACM Press, pp. 1–8.

[5]
Aronov, B., van Kreveld, M., Löffler, M. and Silveira, R. I. (2011) Peeling meshed potatoes. Algorithmica
60
349–367.

[6]
Buchin, K., Knauer, C., Kriegel, K., Schulz, A. and Seidel, R. (2007) On the number of cycles in planar graphs. In *Proc. 13th Annual International Conference on Computing and Combinatorics (COCOON)*, Vol. 4598 of Lecture Notes in Computer Science, Springer, pp. 97–107.

[7]
Chang, J. S. and Yap, C. K. (1986) A polynomial solution for the potato-peeling problem. Discrete Comput. Geom.
1
155–182.

[8]
Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009) Introduction to Algorithms, third edition, MIT Press.

[9]
Dumitrescu, A., Löffler, M., Schulz, A. and Tóth, C. D. (2016) Counting carambolas. Graphs Combin.
32
923–942.

[10]
Dumitrescu, A., Mandal, R. and Tóth, C. D. (2016) Monotone paths in geometric triangulations. arXiv:1608.04812. Extended abstract of an earlier version in *Proc. 27th International Workshop on Combinatorial Algorithms (IWOCA 2016)*, Vol. 9843 of Lecture Notes in Computer Science, Springer, pp. 411–422.

[11]
Dumitrescu, A., Schulz, A., Sheffer, A. and Tóth, C. D. (2013) Bounds on the maximum multiplicity of some common geometric graphs. SIAM J. Discrete Math.
27
802–826.

[12]
Dumitrescu, A. and Tóth, C. D. (2012) Computational Geometry Column 54. SIGACT News Bull.
43
90–97.

[13]
Dumitrescu, A. and Tóth, C. D. (2017) Convex polygons in geometric triangulations. arXiv:1411.1303v3

[14]
Eppstein, D., Overmars, M., Rote, G. and Woeginger, G. (1992) Finding minimum area *k*-gons. Discrete Comput. Geom.
7
45–58.

[15]
Erdős, P. (1978) Some more problems on elementary geometry. Gazette Austral. Math. Soc.
5
52–54.

[16]
Erdős, P. and Szekeres, G. (1935) A combinatorial problem in geometry. Compositio Math.
2
463–470.

[17]
García, A., Noy, M. and Tejel, A. (2000) Lower bounds on the number of crossing-free subgraphs of *K*
_{
N
}
. Comput. Geom. Theory Appl.
16
211–221.

[18]
Goodman, J. E. (1981) On the largest convex polygon contained in a non-convex *n*-gon, or how to peel a potato. Geometria Dedicata
11
99–106.

[19]
van Kreveld, M. J., Löffler, M. and Pach, J. (2012) How many potatoes are in a mesh? In *Proc. 23rd International Symposium on Algebraic Computation (ISAAC)*, Vol. 7676 of Lecture Notes in Computer Science, Springer, pp. 166–176.

[20]
Marx, D. and Miltzow, T. (2016) Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems. In *Proc. 32nd International Symposium on Computational Geometry (SoCG)*, LIPIcs 51, Schloss Dagstuhl, article 52.

[21]
Morris, W. and Soltan, V. (2000) The Erdős–Szekeres problem on points in convex position: A survey. Bull. Amer. Math. Soc.
37
437–458.

[22]
Razen, A., Snoeyink, J. and Welzl, E. (2008) Number of crossing-free geometric graphs vs. triangulations. Electron. Notes Discrete Math.
31
195–200.

[23]
Razen, A. and Welzl, E. (2011) Counting plane graphs with exponential speed-up. In Rainbow of Computer Science
Calude, C. S.
et al., eds), Springer, pp. 36–46.

[24]
Sharir, M. and Sheffer, A. (2011) Counting triangulations of planar point sets. Electron. J. Combin.
18
P70.

[25]
Sharir, M. and Sheffer, A. (2013) Counting plane graphs: Cross-graph charging schemes. Combin. Probab. Comput.
22
935–954.

[26]
Sharir, M., Sheffer, A. and Welzl, E. (2013) Counting plane graphs: Perfect matchings, spanning cycles, and Kasteleyn's technique. J. Combin. Theory Ser. A
120
777–794.

[27]
Sharir, M. and Welzl, E. (2006) On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput.
36
695–720.

[29]
Wettstein, M. (2016) Counting and enumerating crossing-free geometric graphs. In *Proc. 30th Symposium on Computational Geometry (SOCG)*, ACM Press, pp. 1–10. Full paper available at arXiv:1604.05350.