[1]
Ajtai, M., Komlós, J. and Szemerédi, E. (1980) A note on Ramsey numbers, J. Combin. Theory Ser. A
29
354–360.

[2]
Alon, N., Dinur, I., Friedgut, E. and Sudakov, B. (2004) Graph products, Fourier analysis and spectral techniques.
Geom. Funct. Anal.
14
913–940.

[3]
Balogh, J., Bohman, T. and Mubayi, D. (2009) Erdős–Ko–Rado in random hypergraphs.
Combin. Probab. Comput.
18
629–646.

[5]
Balogh, J., Das, S., Delcourt, M., Liu, H. and Sharifzadeh, M. (2015) Intersecting families of discrete structures are typically trivial.
J. Combin. Theory Ser. A
132
224–245.

[6]
Balogh, J., Morris, R. and Samotij, W. (2015) Independent sets in hypergraphs.
J. Amer. Math. Soc.
28
669–709.

[8]
Conlon, D. and Gowers, W. Combinatorial theorems in sparse random sets. Submitted DOI 10.4007/annals.2016.184.2.2.

[9]
Das, S. and Tran, T.
Removal and stability for Erdős–Ko–Rado. SIAM J. Discrete Math., to appear DOI:10.1137/15M105149X.

[10]
Devlin, P. and Kahn, J. On stability in the Erdős–Ko–Rado theorem. Submitted DOI:10.1137/15M1012992.

[11]
Erdős, P., Ko, C. and Rado, R. (1961) Intersection theorems for systems of finite sets.
Quart. J. Math.
12
313–320.

[12]
Friedgut, E. (2008) On the measure of intersecting families, uniqueness and stability.
Combinatorica
28
503–528.

[13]
Friedgut, E. and Regev, O. Manuscript.

[14]
Hamm, A. and Kahn, J. On Erdős–Ko–Rado for random hypergraphs I. Submitted.

[15]
Hamm, A. and Kahn, J. On Erdős–Ko–Rado for random hypergraphs II. Submitted.

[16]
Hoffman, A. (1970) On eigenvalues and colorings of graphs. In *Graph Theory and its Applications (Proc. Advanced Sem., Math. Research Center, Univ. of Wisconsin)*, pp. 79–91.

[17]
Janson, S., Łuczak, T. and Ruciński, A. (2000) Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience.

[18]
Kleitman, D. and Winston, K. (1982) On the number of graphs without 4-cycles.
Discrete Math.
41
167–172.

[19]
Kohayakawa, Y., Kreuter, B. and Steger, A. (1998) An extremal problem for random graphs and the number of graphs with large even-girth.
Combinatorica
18
101–120.

[20]
Kohayakawa, Y., Lee, S. J., Rödl, V. and Samotij, W. (2015) The number of Sidon sets and the maximum size of Sidon sets contained in a sparse random set of integers.
Random Struct. Alg.
46
1–25.

[21]
Lovász, L. (1979) On the Shannon capacity of a graph.
IEEE Trans. Inform. Theory
25
1–7.

[22]
Samotij, W. (2014) Stability results for random discrete structures.
Random Struct. Alg.
44
269–289.

[23]
Saxton, D. and Thomason, A. (2015) Hypergraph containers.
Invent. Math.
201
925–992.

[24]
Schacht, M. Extremal results for random discrete structures. Submitted DOI 10.4007/annals.2016.184.2.1.

[25]
Shearer, J. (1983) A note on the independence number of triangle-free graphs.
Discrete Math.
46
83–87.