Skip to main content Accessibility help

Minimum Number of Monotone Subsequences of Length 4 in Permutations

  • JÓZSEF BALOGH (a1) (a2), PING HU (a1), BERNARD LIDICKÝ (a1) (a3), OLEG PIKHURKO (a4), BALÁZS UDVARI (a2) and JAN VOLEC (a4)...


We show that for every sufficiently large n, the number of monotone subsequences of length four in a permutation on n points is at least

\begin{equation*} \binom{\lfloor{n/3}\rfloor}{4} + \binom{\lfloor{(n+1)/3}\rfloor}{4} + \binom{\lfloor{(n+2)/3}\rfloor}{4}. \end{equation*}
Furthermore, we characterize all permutations on [n] that attain this lower bound. The proof uses the flag algebra framework together with some additional stability arguments. This problem is equivalent to some specific type of edge colourings of complete graphs with two colours, where the number of monochromatic K4 is minimized. We show that all the extremal colourings must contain monochromatic K4 only in one of the two colours. This translates back to permutations, where all the monotone subsequences of length four are all either increasing, or decreasing only.



Hide All
[1]Albert, M. H., Atkinson, M. D., Handley, C. C., Holton, D. A. and Stromquist, W. (2002) On packing densities of permutations. Electron. J. Combin. 9 R5.
[2]Alon, N. and Shapira, A. (2008) A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37 17031727.
[3]Baber, R. Turán densities of hypercubes. Submitted.
[4]Baber, R. (2011) Some results in extremal combinatorics. Dissertation.
[5]Baber, R. and Talbot, J. (2011) Hypergraphs do jump. Combin. Probab. Comput. 20 161171.
[6]Baber, R. and Talbot, J. (2014) A solution to the 2/3 conjecture. SIAM J. Discrete Math. 28 756766.
[7]Balogh, J., Hu, P., Lidický, B. and Liu, H. (2014) Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. European J. Combin. 35 7585.
[8]Borchers, B. (1999) CSDP: A C library for semidefinite programming. Optimization Methods and Software 11 613623.
[9]Cummings, J., Kráľ, D., Pfender, F., Sperfeld, K., Treglown, A. and Young, M. (2013) Monochromatic triangles in three-coloured graphs. J. Combin. Theory Ser. B 103 489503.
[10]Das, S., Huang, H., Ma, J., Naves, H. and Sudakov, B. (2013) A problem of Erdős on the minimum number of k-cliques. J. Combin. Theory Ser. B 103 344373.
[11]Erdős, P. and Szekeres, G. (1935) A combinatorial problem in geometry. Compositio Math. 2 463470.
[12]Falgas-Ravry, V. and Vaughan, E. R. (2013) Applications of the semi-definite method to the Turán density problem for 3-graphs. Combin. Probab. Comput. 22 2154.
[13]Giraud, G. (1979) Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ramsey. J. Combin. Theory Ser. B 27 237253.
[14]Glebov, R., Kráľ, D. and Volec, J. (2013) A problem of Erdős and Sós on 3-graphs. In The Seventh European Conference on Combinatorics, Graph Theory and Applications, Vol. 16 of CRM Series, Ed. Norm., Pisa. pp. 38.
[15]Goodman, A. W. (1959) On sets of acquaintances and strangers at any party. Amer. Math. Monthly 66 778783.
[16]Grzesik, A. (2012) On the maximum number of five-cycles in a triangle-free graph. J. Combin. Theory Ser. B 102 10611066.
[17]Hatami, H., Hladký, J., Kráľ, D., Norine, S. and Razborov, A. (2012) Non-three-colourable common graphs exist. Combin. Probab. Comput. 21 734742.
[18]Hatami, H., Hladký, J., Kráľ, D., Norine, S. and Razborov, A. (2013) On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A 120 722732.
[19]Hladký, J., Kráľ, D. and Norine, S. (2009) Counting flags in triangle-free digraphs. In European Conference on Combinatorics, Graph Theory and Applications: EuroComb 2009, Vol. 34 of Electron. Notes Discrete Math., Elsevier, pp. 621625.
[20]Kráľ, D., Liu, C.-H., Sereni, J.-S., Whalen, P. and Yilma, Z. B. (2013) A new bound for the 2/3 conjecture. Combin. Probab. Comput. 22 384393.
[21]Kráľ, D., Mach, L. and Sereni, J.-S. (2012) A new lower bound based on Gromov's method of selecting heavily covered points. Discrete Comput. Geom. 48 487498.
[22]Myers, J. S. (2002/03) The minimum number of monotone subsequences. Electron. J. Combin. 9 R4.
[23]Nieß, S. Counting monochromatic copies of K 4: A new lower bound for the Ramsey multiplicity problem. Submitted.
[24]Pikhurko, O. (2011) The minimum size of 3-graphs without a 4-set spanning no or exactly three edges. European J. Combin. 32 11421155.
[25]Pikhurko, O. and Razborov, A. Asymptotic structure of graphs with the minimum number of triangles. arXiv:1204.2846. Submitted.
[26]Pikhurko, O. and Vaughan, E. R. (2013) Minimum number of k-cliques in graphs with bounded independence number. Combin. Probab. Comput. 22 910934.
[27]Presutti, C. B. (2008) Determining lower bounds for packing densities of non-layered patterns using weighted templates. Electron. J. Combin. 15 R50.
[28]Presutti, C. B. and Stromquist, W. (2010) Packing rates of measures and a conjecture for the packing density of 2413. In Permutation Patterns, Vol. 376 of London Mathematical Society Lecture Note Series, Cambridge University Press, pp. 287316.
[29]Razborov, A. A. (2007) Flag algebras. J. Symbolic Logic 72 12391282.
[30]Razborov, A. A. (2013) Flag algebras: An interim report. In The Mathematics of Paul Erdős II, Springer, pp. 207232.
[31]Razborov, A. A. (2013) On the Caccetta–Häggkvist conjecture with forbidden subgraphs. J. Graph Theory 74 236248.
[32]Samotij, W. and Sudakov, B. On the number of monotone sequences. Submitted.
[33]Sperfeld, K. The inducibility of small oriented graphs. Submitted.
[34]Sperfeld, K. (2011) On the minimal monochromatic K 4-density.
[35]Stein, al. (2013) Sage Mathematics Software: Version 5.6. The SAGE Development Team.
[36]Thomason, A. (1989) A disproof of a conjecture of Erdős in Ramsey theory. J. London Math. Soc. (2) 39 246255.
[37]Vaughan, E. R. (2013) Flagmatic: Version 2.0.
[38]Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K. and Goto, K. (2010) A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460 Dept. of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan, September, 2010.

MSC classification

Related content

Powered by UNSILO

Minimum Number of Monotone Subsequences of Length 4 in Permutations

  • JÓZSEF BALOGH (a1) (a2), PING HU (a1), BERNARD LIDICKÝ (a1) (a3), OLEG PIKHURKO (a4), BALÁZS UDVARI (a2) and JAN VOLEC (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.