[1]Albert, M. H., Atkinson, M. D., Handley, C. C., Holton, D. A. and Stromquist, W. (2002) On packing densities of permutations. Electron. J. Combin. 9 R5.

[2]Alon, N. and Shapira, A. (2008) A characterization of the (natural) graph properties testable with one-sided error. SIAM J. Comput. 37 1703–1727.

[3]Baber, R. Turán densities of hypercubes. Submitted.

[4]Baber, R. (2011) Some results in extremal combinatorics. Dissertation.

[5]Baber, R. and Talbot, J. (2011) Hypergraphs do jump. Combin. Probab. Comput. 20 161–171.

[6]Baber, R. and Talbot, J. (2014) A solution to the 2/3 conjecture. SIAM J. Discrete Math. 28 756–766.

[7]Balogh, J., Hu, P., Lidický, B. and Liu, H. (2014) Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube. European J. Combin. 35 75–85.

[8]Borchers, B. (1999) CSDP: A C library for semidefinite programming. Optimization Methods and Software 11 613–623.

[9]Cummings, J., Kráľ, D., Pfender, F., Sperfeld, K., Treglown, A. and Young, M. (2013) Monochromatic triangles in three-coloured graphs. J. Combin. Theory Ser. B 103 489–503.

[10]Das, S., Huang, H., Ma, J., Naves, H. and Sudakov, B. (2013) A problem of Erdős on the minimum number of *k*-cliques. J. Combin. Theory Ser. B 103 344–373.

[11]Erdős, P. and Szekeres, G. (1935) A combinatorial problem in geometry. Compositio Math. 2 463–470.

[12]Falgas-Ravry, V. and Vaughan, E. R. (2013) Applications of the semi-definite method to the Turán density problem for 3-graphs. Combin. Probab. Comput. 22 21–54.

[13]Giraud, G. (1979) Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ramsey. J. Combin. Theory Ser. B 27 237–253.

[14]Glebov, R., Kráľ, D. and Volec, J. (2013) A problem of Erdős and Sós on 3-graphs. In The Seventh European Conference on Combinatorics, Graph Theory and Applications, Vol. 16 of *CRM Series*, Ed. Norm., Pisa. pp. 3–8.

[15]Goodman, A. W. (1959) On sets of acquaintances and strangers at any party. Amer. Math. Monthly 66 778–783.

[16]Grzesik, A. (2012) On the maximum number of five-cycles in a triangle-free graph. J. Combin. Theory Ser. B 102 1061–1066.

[17]Hatami, H., Hladký, J., Kráľ, D., Norine, S. and Razborov, A. (2012) Non-three-colourable common graphs exist. Combin. Probab. Comput. 21 734–742.

[18]Hatami, H., Hladký, J., Kráľ, D., Norine, S. and Razborov, A. (2013) On the number of pentagons in triangle-free graphs. J. Combin. Theory Ser. A 120 722–732.

[19]Hladký, J., Kráľ, D. and Norine, S. (2009) Counting flags in triangle-free digraphs. In European Conference on Combinatorics, Graph Theory and Applications: EuroComb 2009, Vol. 34 of *Electron. Notes Discrete Math.*, Elsevier, pp. 621–625.

[20]Kráľ, D., Liu, C.-H., Sereni, J.-S., Whalen, P. and Yilma, Z. B. (2013) A new bound for the 2/3 conjecture. Combin. Probab. Comput. 22 384–393.

[21]Kráľ, D., Mach, L. and Sereni, J.-S. (2012) A new lower bound based on Gromov's method of selecting heavily covered points. Discrete Comput. Geom. 48 487–498.

[22]Myers, J. S. (2002/03) The minimum number of monotone subsequences. Electron. J. Combin. 9 R4.

[23]Nieß, S. Counting monochromatic copies of *K* _{4}: A new lower bound for the Ramsey multiplicity problem. Submitted.

[24]Pikhurko, O. (2011) The minimum size of 3-graphs without a 4-set spanning no or exactly three edges. European J. Combin. 32 1142–1155.

[25]Pikhurko, O. and Razborov, A. Asymptotic structure of graphs with the minimum number of triangles. arXiv:1204.2846. Submitted.

[26]Pikhurko, O. and Vaughan, E. R. (2013) Minimum number of *k*-cliques in graphs with bounded independence number. Combin. Probab. Comput. 22 910–934.

[27]Presutti, C. B. (2008) Determining lower bounds for packing densities of non-layered patterns using weighted templates. Electron. J. Combin. 15 R50.

[28]Presutti, C. B. and Stromquist, W. (2010) Packing rates of measures and a conjecture for the packing density of 2413. In Permutation Patterns, Vol. 376 of *London Mathematical Society Lecture Note Series*, Cambridge University Press, pp. 287–316.

[29]Razborov, A. A. (2007) Flag algebras. J. Symbolic Logic 72 1239–1282.

[30]Razborov, A. A. (2013) Flag algebras: An interim report. In The Mathematics of Paul Erdős II, Springer, pp. 207–232.

[31]Razborov, A. A. (2013) On the Caccetta–Häggkvist conjecture with forbidden subgraphs. J. Graph Theory 74 236–248.

[32]Samotij, W. and Sudakov, B. On the number of monotone sequences. Submitted.

[33]Sperfeld, K. The inducibility of small oriented graphs. Submitted.

[34]Sperfeld, K. (2011) On the minimal monochromatic *K* _{4}-density.

[35]Stein, W.et al. (2013) *Sage Mathematics Software: Version 5.6*. The SAGE Development Team. http://www.sagemath.org [36]Thomason, A. (1989) A disproof of a conjecture of Erdős in Ramsey theory. J. London Math. Soc. (2) 39 246–255.

[38]Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K. and Goto, K. (2010) A high-performance software package for semidefinite programs: SDPA 7. Research Report B-460 Dept. of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan, September, 2010.