Skip to main content Accessibility help

Pfaffian Formulas for Spanning Tree Probabilities

  • GRETA PANOVA (a1) and DAVID B. WILSON (a2)


We show that certain topologically defined uniform spanning tree probabilities for graphs embedded in an annulus can be computed as linear combinations of Pfaffians of matrices involving the line-bundle Green's function, where the coefficients count cover-inclusive Dyck tilings of skew Young diagrams.



Hide All
[1] Carroll, G. D. and Speyer, D. (2004) The cube recurrence. Electron. J. Combin. 11 R73.
[2] Curtis, E. B., Ingerman, D. and Morrow, J. A. (1998) Circular planar graphs and resistor networks. Linear Algebra Appl. 283 115150.
[3] Forman, R. (1993) Determinants of Laplacians on graphs. Topology, 32 3546.
[4] Josuat-Vergés, M. and Kim, J. S. (2014) Generalized Dyck tilings (extended abstract). In 26th Formal Power Series and Algebraic Combinatorics: FPSAC, Discrete Math. Theor. Comput. Sci. Proc. pp. 181–192.
[5] Kenyon, R. (2011) Spanning forests and the vector bundle Laplacian. Ann. Probab. 39 19832017.
[6] Kenyon, R. W. and Wilson, D. B. (2009) Combinatorics of tripartite boundary connections for trees and dimers. Electron. J. Combin. 16 R112.
[7] Kenyon, R. W. and Wilson, D. B. (2011) Boundary partitions in trees and dimers. Trans. Amer. Math. Soc. 363 13251364.
[8] Kenyon, R. W. and Wilson, D. B. (2011) Double-dimer pairings and skew Young diagrams. Electron. J. Combin. 18 130.
[9] Kenyon, R. W. and Wilson, D. B. (2014) The space of circular planar electrical networks. arXiv:1411.7425
[10] Kenyon, R. W. and Wilson, D. B. (2015) Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on planar graphs. J. Amer. Math. Soc. 28 9851030.
[11] Kim, J. S. (2012) Proofs of two conjectures of Kenyon and Wilson on Dyck tilings. J. Combin. Theory Ser. A, 119 16921710.
[12] Kim, J. S., Mészáros, K., Panova, G. and Wilson, D. B. (2014) Dyck tilings, increasing trees, descents, and inversions. J. Combin. Theory Ser. A, 122 927.
[13] Shigechi, K. and Zinn-Justin, P. (2012) Path representation of maximal parabolic Kazhdan–Lusztig polynomials. J. Pure Appl. Algebra 216 25332548.
[14] Wilson, D. B. (2014) Local statistics of the abelian sandpile model. Manuscript.

MSC classification

Pfaffian Formulas for Spanning Tree Probabilities

  • GRETA PANOVA (a1) and DAVID B. WILSON (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.