[1]
Alon, N. and Spencer, J. (2008) The Probabilistic Method, Wiley.

[2]
Ben-Shimon, S., Krivelevich, M. and Sudakov, B. (2011) On the resilience of Hamiltonicity and optimal packing of Hamilton cycles in random graphs. SIAM J. Discrete Math.
25
1176–1193.

[3]
Bollobás, B. (1984) The evolution of sparse graphs. In Graph Theory and Combinatorics: Proc. Cambridge Combinatorial Conference in honor of Paul Erdős, Academic Press, pp. 35–57.

[4]
Bollobás, B. (2001) Random Graphs, second edition, Cambridge University Press.

[5]
Diestel, R. (2010) Graph Theory, fourth edition, Vol. 173 of *Graduate Texts in Mathematics*, Springer.

[6]
Erdős, P. and Rényi, A. (1960) On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences
5
17–61.

[7]
Gilbert, E. (1959) Random graphs. Ann. Math. Statist.
30
1141–1144.

[8]
Glebov, R. and Krivelevich, M. (2013) On the number of Hamilton cycles in sparse random graphs. SIAM J. Discrete Math.
27
27–42.

[9]
Hopcroft, J. and Tarjan, R. (1973) Algorithm 447: Efficient algorithms for graph manipulation. Comm. Assoc. Comput. Mach.
16
372–378.

[10]
Komlós, J. and Szemerédi, E. (1983) Limit distributions for the existence of Hamilton circuits in a random graph. Discrete Math.
43
55–63.

[11]
Korshunov, A. (1976) Solution of a problem of Erdős and Rényi on Hamiltonian cycles in non-oriented graphs. Soviet Math. Dokl.
17
760–764.

[12]
Krivelevich, M., Lee, C. and Sudakov, B. (2015) Long paths and cycles in random subgraphs of graphs with large minimum degree. Random Struct. Alg.
46
320–345.

[13]
Krivelevich, M. and Sudakov, B. (2013) The phase transition in random graphs: A simple proof. Random Struct. Alg.
43
131–138.

[14]
Menger, K. (1927) Zur allgemeinen Kurventheorie. Fund. Math.
10
96–115.

[15]
Pósa, L. (1976) Hamiltonian circuits in random graphs. Discrete Math.
14
359–364.

[16]
Riordan, O. (2014) Long cycles in random subgraphs of graphs with large minimum degree. Random Struct. Alg.
45
764–767.

[17]
West, D. (2007) Introduction to Graph Theory, Prentice Hall.