Skip to main content
×
Home
    • Aa
    • Aa

A Third Order Adaptive ADER Scheme for One Dimensional Conservation Laws

  • Yaguang Gu (a1) and Guanghui Hu (a1) (a2)
Abstract
Abstract

We introduce a third order adaptive mesh method to arbitrary high order Godunov approach. Our adaptive mesh method consists of two parts, i.e., mesh-redistribution algorithm and solution algorithm. The mesh-redistribution algorithm is derived based on variational approach, while a new solution algorithm is developed to preserve high order numerical accuracy well. The feature of proposed Adaptive ADER scheme includes that 1). all simulations in this paper are stable for large CFL number, 2). third order convergence of the numerical solutions is successfully observed with adaptive mesh method, and 3). high resolution and non-oscillatory numerical solutions are obtained successfully when there are shocks in the solution. A variety of numerical examples show the feature well.

Copyright
Corresponding author
*Corresponding author. Email addresses: umacgyg@gmail.com (Y. G. Gu), garyhu@umac.mo (G. H. Hu)
References
Hide All
[2] R. Borges , M. Carmona , B. Costa , and W. S. Don , An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227(6):31913211, 2008.

[3] W.M. Cao , W. Z. Huang and R. D. Russell , A study ofmonitor functions for two-dimensional adaptive mesh generation, SIAM J. Sci. Comput., 20(6):19781994, 1999.

[4] J. Bo. Cheng , E. F. Toro , S. Jiang , and W. J. Tang , A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme, J. Comput. Phys., 251:5380, 2013.

[5] P. G. Ciarlet , The finite element method for elliptic problems, volume 40, SIAM, 2002.

[6] B. Cockburn , B. Dong , J. Guzmán , M. Restelli , and R. Sacco , A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Sci. Comput., 31(5):38273846, 2009.

[8] B. Cockburn and W. J. Zhang , A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 51(1):676693, 2013.

[9] A. Gelb and E. Tadmor , Adaptive edge detectors for piecewise smooth data based on the minmod limiter, J. Sci. Comput., 28(2-3):279306, 2006.

[10] S. Gottlieb and C.-W. Shu , Total variation diminishing Runge-Kutta schemes, Math. Comp., 67(221):7385, 1998.

[11] F. X. Hu , R. Wang , X. Y. Chen , and H. Feng , An adaptive mesh method for 1D hyperbolic conservation laws, Appl. Numer. Math., 91:1125, 2015.

[12] G. H. Hu , An adaptive finite volume method for 2D steady Euler equations with WENO reconstruction, J. Comput. Phys., 252:591605, 2013.

[13] G. H. Hu , R. Li , and T. Tang , A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids, J. Comput. Phys., 229(5):16811697, 2010.

[14] G. H. Hu , R. Li , and T. Tang , A robust WENO type finite volume solver for steady Euler equations on unstructured grids, Commun. Comput. Phys., 9(3):627648, 2011.

[15] W. Z. Huang and R. D. Russell , Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 20(3):9981015, 1998.

[16] X. Ji , H. Z. Tang , High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5(3):333358, 2012.

[18] R. Kannan and Z. J. Wang , Improving the high order spectral volume formulation using a diffusion regulator, Commun. Comput. Phys., 12(01):247260, 2012.

[19] R. Kannan and Z. J. Wang , A high order spectral volume solution to the Burgers’ equation using the Hopf–Cole transformation, Internat. J. Numer. Methods Fluids, 69(4):781801, 2012.

[20] L. Krivodonova , Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226(1):879896, 2007.

[22] R. J. LeVeque , Numerical methods for conservation laws, volume 132, Birkhäuser Basel, 1992.

[23] R. Li , T. Tang , and P. W. Zhang , Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170(2):562588, 2001.

[24] J. Liu , M. Goman , X. Li , and M. Liu , Positivity-preserving Runge-Kutta discontinuous Galerkin method on adaptive Cartesian grid for strong moving shock, Numer. Math. Theor. Meth. Appl., 9(1):87110, 2016.

[26] N. C. Nguyen , J. Peraire , and B. Cockburn , A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys., 302:674692, 2015.

[27] J. X. Qiu and C.-W. Shu , Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193(1):115135, 2004.

[28] J. Remski , Mesh spacing estimates and efficiency considerations for moving mesh systems, Numer. Math. Theor. Meth. Appl., 9(3):432450, 2016.

[30] H. Z. Tang and T. Tang , Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41(2):487515, 2003.

[31] V. A. Titarev and E. F. Toro , ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys., 204(2):715736, 2005.

[32] V. A. Titarev and E. F. Toro , ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17(1-4):609618, 2002.

[33] E. F. Toro , Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 2009.

[34] E. F. Toro and V. A. Titarev , Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212(1):150165, 2006.

[35] E. F. Toro and V. A. Titarev , Solution of the generalized Riemann problem for advection–reaction equations, Proc. Roy. Soc. London A, volume 458:271281, 2002.

[36] C. Wang , X. X. Zhang , C.-W. Shu , and Jianguo Ning , Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, J. Comput. Phys., 231(2):653665, 2012.

[37] Z. J. Wang , K. Fidkowski , R. Abgrall , F. Bassi , D. Caraeni , A. Cary , H. Deconinck , R. Hartmann , K. Hillewaert , H. T. Huynh , et al, High-order CFD methods: current status and perspective, Internat. J. Numer. Methods Fluids, 72(8):811845, 2013.

[38] K. L. Wu and H. Z. Tang , Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics, J. Comput. Phys., 256:277307, 2014.

[39] Q. Zhang and C.-W. Shu , Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numer. Math., 126(4):703740, 2014.

[40] H. Q. Zhu and J. X. Qiu , Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-dimensional case, J. Comput. Phys., 228(18):69576976, 2009.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 14 *
Loading metrics...

Abstract views

Total abstract views: 118 *
Loading metrics...

* Views captured on Cambridge Core between 6th July 2017 - 16th October 2017. This data will be updated every 24 hours.