Skip to main content

A Third Order Adaptive ADER Scheme for One Dimensional Conservation Laws

  • Yaguang Gu (a1) and Guanghui Hu (a1) (a2)

We introduce a third order adaptive mesh method to arbitrary high order Godunov approach. Our adaptive mesh method consists of two parts, i.e., mesh-redistribution algorithm and solution algorithm. The mesh-redistribution algorithm is derived based on variational approach, while a new solution algorithm is developed to preserve high order numerical accuracy well. The feature of proposed Adaptive ADER scheme includes that 1). all simulations in this paper are stable for large CFL number, 2). third order convergence of the numerical solutions is successfully observed with adaptive mesh method, and 3). high resolution and non-oscillatory numerical solutions are obtained successfully when there are shocks in the solution. A variety of numerical examples show the feature well.

Corresponding author
*Corresponding author. Email addresses: (Y. G. Gu), (G. H. Hu)
Hide All
[2] Borges R., Carmona M., Costa B., and Don W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227(6):31913211, 2008.
[3] Cao W.M., Huang W. Z. and Russell R. D., A study ofmonitor functions for two-dimensional adaptive mesh generation, SIAM J. Sci. Comput., 20(6):19781994, 1999.
[4] Cheng J. Bo., Toro E. F., Jiang S., and Tang W. J., A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme, J. Comput. Phys., 251:5380, 2013.
[5] Ciarlet P. G., The finite element method for elliptic problems, volume 40, SIAM, 2002.
[6] Cockburn B., Dong B., Guzmán J., Restelli M., and Sacco R., A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Sci. Comput., 31(5):38273846, 2009.
[7] Cockburn B. and Shu C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp., 52(186):411435, 1989.
[8] Cockburn B. and Zhang W. J., A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 51(1):676693, 2013.
[9] Gelb A. and Tadmor E., Adaptive edge detectors for piecewise smooth data based on the minmod limiter, J. Sci. Comput., 28(2-3):279306, 2006.
[10] Gottlieb S. and Shu C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67(221):7385, 1998.
[11] Hu F. X., Wang R., Chen X. Y., and Feng H., An adaptive mesh method for 1D hyperbolic conservation laws, Appl. Numer. Math., 91:1125, 2015.
[12] Hu G. H., An adaptive finite volume method for 2D steady Euler equations with WENO reconstruction, J. Comput. Phys., 252:591605, 2013.
[13] Hu G. H., Li R., and Tang T., A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids, J. Comput. Phys., 229(5):16811697, 2010.
[14] Hu G. H., Li R., and Tang T., A robust WENO type finite volume solver for steady Euler equations on unstructured grids, Commun. Comput. Phys., 9(3):627648, 2011.
[15] Huang W. Z. and Russell R. D., Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput., 20(3):9981015, 1998.
[16] Ji X., Tang H. Z., High-order accurate Runge-Kutta (local) discontinuous Galerkin methods for one-and two-dimensional fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 5(3):333358, 2012.
[17] Jiang G.-S. and Shu C.-W., Efficient implementation of weighted ENO schemes, Technical report, DTIC Document, 1995.
[18] Kannan R. and Wang Z. J., Improving the high order spectral volume formulation using a diffusion regulator, Commun. Comput. Phys., 12(01):247260, 2012.
[19] Kannan R. and Wang Z. J., A high order spectral volume solution to the Burgers’ equation using the Hopf–Cole transformation, Internat. J. Numer. Methods Fluids, 69(4):781801, 2012.
[20] Krivodonova L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226(1):879896, 2007.
[21] LeVeque R. J., Finite volume methods for hyperbolic problems, volume 31, Cambridge Univ. Press, 2002.
[22] LeVeque R. J., Numerical methods for conservation laws, volume 132, Birkhäuser Basel, 1992.
[23] Li R., Tang T., and Zhang P. W., Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170(2):562588, 2001.
[24] Liu J., Goman M., Li X., and Liu M., Positivity-preserving Runge-Kutta discontinuous Galerkin method on adaptive Cartesian grid for strong moving shock, Numer. Math. Theor. Meth. Appl., 9(1):87110, 2016.
[25] Millington R. C., Titarev V. A., and Toro E. F., Freistühler H., Warnecke G. (Eds.) ADER: Arbitrary order non-oscillatory advection schemes hyperbolic problems: Theory, Numerics, Applications, volume 141:723732, Birkhäuser Basel, 2001.
[26] Nguyen N. C., Peraire J., and Cockburn B., A class of embedded discontinuous Galerkin methods for computational fluid dynamics, J. Comput. Phys., 302:674692, 2015.
[27] Qiu J. X. and Shu C.-W., Hermite WENO schemes and their application as limiters for Runge–Kutta discontinuous Galerkin method: one-dimensional case, J. Comput. Phys., 193(1):115135, 2004.
[28] Remski J., Mesh spacing estimates and efficiency considerations for moving mesh systems, Numer. Math. Theor. Meth. Appl., 9(3):432450, 2016.
[29] Shu C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Springer, 1998.
[30] Tang H. Z. and Tang T., Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41(2):487515, 2003.
[31] Titarev V. A. and Toro E. F., ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys., 204(2):715736, 2005.
[32] Titarev V. A. and Toro E. F., ADER: Arbitrary high order Godunov approach, J. Sci. Comput., 17(1-4):609618, 2002.
[33] Toro E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, Springer, 2009.
[34] Toro E. F. and Titarev V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212(1):150165, 2006.
[35] Toro E. F. and Titarev V. A., Solution of the generalized Riemann problem for advection–reaction equations, Proc. Roy. Soc. London A, volume 458:271281, 2002.
[36] Wang C., Zhang X. X., Shu C.-W., and Ning Jianguo, Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, J. Comput. Phys., 231(2):653665, 2012.
[37] Wang Z. J., Fidkowski K., Abgrall R., Bassi F., Caraeni D., Cary A., Deconinck H., Hartmann R., Hillewaert K., Huynh H. T., et al, High-order CFD methods: current status and perspective, Internat. J. Numer. Methods Fluids, 72(8):811845, 2013.
[38] Wu K. L. and Tang H. Z., Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics, J. Comput. Phys., 256:277307, 2014.
[39] Zhang Q. and Shu C.-W., Error estimates for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data, Numer. Math., 126(4):703740, 2014.
[40] Zhu H. Q. and Qiu J. X., Adaptive Runge–Kutta discontinuous Galerkin methods using different indicators: one-dimensional case, J. Comput. Phys., 228(18):69576976, 2009.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 155 *
Loading metrics...

* Views captured on Cambridge Core between 6th July 2017 - 18th January 2018. This data will be updated every 24 hours.