Hostname: page-component-76c49bb84f-hwk5l Total loading time: 0 Render date: 2025-07-09T16:01:40.180Z Has data issue: false hasContentIssue false

Arithmetic 𝒟-modules on the unit disk. With an appendix by Shigeki Matsuda

Published online by Cambridge University Press:  09 November 2011

Richard Crew*
Affiliation:
Department of Mathematics, The University of Florida, Gainesville, FL 32601, USA (email: rcrew@ufl.edu)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let 𝒱 be a complete discrete valuation ring of mixed characteristic. We classify arithmetic 𝒟-modules on Spf(𝒱[[t]]) up to certain kind of ‘analytic isomorphism’. This result is used to construct canonical extensions (in the sense of Katz and Gabber) for objects of this category.

Information

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[Abh64]Abhyankar, S. S., Local analytic geometry (Academic Press, New York, 1964).Google Scholar
[And02]André, Y., Filtrations de type Hasse–Arf et monodromie p-adique, Invent. Math. 148 (2002), 285317.Google Scholar
[Ber90]Berthelot, P., Cohomologie rigide et théorie des 𝒟-modules, in p-adic analysis, Trento, 29 May–2 June, 1989, Lecture Notes in Mathematics, vol. 1454 eds Baldassari, F., Bosch, S. and Dwork, B. (Springer, New York, 1990).Google Scholar
[Ber96a]Berthelot, P., 𝒟-modules arithmétiques I. Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supér. (4) 29 (1996), 185272.CrossRefGoogle Scholar
[Ber96b]Berthelot, P., Cohomologie rigide et cohomologie rigide à support propre, Preprint 96-03 (1996), IRMAR, Université de Rennes I.Google Scholar
[Ber02a]Berthelot, P., 𝒟-modules arithmétiques II. Descente par Frobenius, Mémoires, vol. 81 (Societé Mathématique de France, Paris, 2002).Google Scholar
[Ber02b]Berthelot, P., Introduction à la théorie arithmétique des 𝒟-modules, in Cohomologies p-adiques et applications arithmétiques (II), Astérisque, vol. 279 eds Berthelot, P.et al. (Societé Mathématique de France, Paris, 2002), 180.Google Scholar
[Ber07]Berthelot, P., Letter to Daniel Caro, June 22 (2007).Google Scholar
[Ber10]Berthelot, P., Letter to the author, Sept. 14 (2010).Google Scholar
[Bos84]Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean analysis, Grundlehren der Mathematischen Wissenschaften, vol. 261 (Springer, Berlin, 1984).Google Scholar
[Car06a]Caro, D., Dévissages des F-complexes de 𝒟-modules arithmetiques en F-isocristaux surconvergents, Invent. Math. 166 (2006), 397456.CrossRefGoogle Scholar
[Car06b]Caro, D., Fonctions L associées aux 𝒟-modules arithmétiques. Cas des courbes, Compositio Math. 142 (2006), 169206.CrossRefGoogle Scholar
[CM02]Christol, G. and Mebkhout, Z., Equations différentielles p-adiques et coefficients p-adiques sur les courbes, in Cohomologies p-adiques et applications arithmétiques (II), Astérisque, vol. 279 eds Berthelot, P.et al. (Societé Mathématique de France, Paris, 2002), 125184.Google Scholar
[Cre87]Crew, R., F-isocrystals and p-adic representations, in Algebraic geometry – Bowdoin 1985, Part 2, Proceedings of Symposia in Pure Mathematics, vol. 46 (American Mathematical Society, Providence, RI, 1987), 111138.CrossRefGoogle Scholar
[Cre98]Crew, R., Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 717763.Google Scholar
[Cre06]Crew, R., Arithmetic 𝒟-modules on a formal curve, Math. Ann. 336 (2006), 439448.Google Scholar
[Fon94]Fontaine, J.-M., Le corps de périodes p-adiques, in Périodes p-adiques, Astérisque, vol. 223 (Societé Mathématique de France, Paris, 1994).Google Scholar
[Gar95]Garnier, L., Correspondance de Katz et irrégularité des isocristaux surconvergents de rang un, Manuscripta Math. 87 (1995), 327348.CrossRefGoogle Scholar
[Gro61]Grothendieck, A., Éléments de géometrie algébrique III 0, Publ. Math. Inst. Hautes Études Sci. 11 (1961).Google Scholar
[Ked04]Kedlaya, K., A p-adic local monodromy theorem, Ann. of Math. (2) 160 (2004), 93184.CrossRefGoogle Scholar
[Lau87]Laumon, G., Transformation de Fourier, constantes locales d’équations fonctionelle et conjecture de Weil, Publ. Math. Inst. Hautes Études Sci. 66 (1987), 131210.CrossRefGoogle Scholar
[Mal91]Malgrange, B., Equations différentielles à coefficients polynomiaux (Birkhäuser, Basel, 1991).Google Scholar
[Mat95]Matsuda, S., Local indices of p-adic differential operators corresponding to Artin–Schreier–Witt coverings, Duke Math. J. 77 (1995), 607625.CrossRefGoogle Scholar
[Mat02]Matsuda, S., Katz correspondence for quasi-unipotent overconvergent isocrystals, Compositio Math. 134 (2002), 134.Google Scholar
[Meb02]Mebkhout, Z., Analogue p-adique du théorème de Turritin et le théorème de la monodromie p-adique, Invent. Math. 148 (2002), 319335.Google Scholar
[Noo04]Noot-Hyughe, C., Transformation de fourier des 𝒟-modules arithmétiques, in Geometric aspects of Dwork theory, eds Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N. M. and Loeser, F. (Walter de Gruyter, Berlin, 2004), vol. 2, 857907.Google Scholar
[Ray70]Raynaud, M., Anneaux locaux henséliens, Lecture Notes in Mathematics, vol. 169 (Springer, New York, 1970).CrossRefGoogle Scholar
[Sch02]Schneider, P., Nonarchimedean functional analysis (Springer, 2002).CrossRefGoogle Scholar
[Vir00]Virrion, A., Dualité locale et holonomomie pour les 𝒟-modules arithmétiques, Bull. Soc. Math. France 128 (2000), 168.Google Scholar