Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-n9lxd Total loading time: 0.787 Render date: 2022-09-30T22:51:34.295Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Asymptotic representations and Drinfeld rational fractions

Published online by Cambridge University Press:  10 July 2012

David Hernandez
Affiliation:
Institut de Mathématiques de Jussieu, Université Paris Diderot (Paris VII), 175 rue du Chevaleret, 75013 Paris, France (email: hernandez@math.jussieu.fr)
Michio Jimbo
Affiliation:
Department of Mathematics, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan (email: jimbomm@rikkyo.ac.jp)
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce and study a category of representations of the Borel algebra associated with a quantum loop algebra of non-twisted type. We construct fundamental representations for this category as a limit of the Kirillov–Reshetikhin modules over the quantum loop algebra and establish explicit formulas for their characters. We prove that general simple modules in this category are classified by n-tuples of rational functions in one variable which are regular and non-zero at the origin but may have a zero or a pole at infinity.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[BHK02]Bazhanov, V., Hibberd, A. and Khoroshkin, S., Integrable structure of 𝒲3 conformal field theory, quantum Bouusinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002), 475547.CrossRefGoogle Scholar
[BLZ99]Bazhanov, V., Lukyanov, S. and Zamolodchikov, A., Integrable structure of conformal field theory III. The Yang-Baxter relation, Comm. Math. Phys. 200 (1999), 297324.CrossRefGoogle Scholar
[BT08]Bazhanov, V. and Tsuboi, Z., Baxter’s Q-operators for supersymmetric chains, Nucl. Phys. B 805 (2008), 451516.CrossRefGoogle Scholar
[Bec94]Beck, J., Braid group action and quantum affine algebras, Comm. Math. Phys. 165 (1994), 555568.CrossRefGoogle Scholar
[BCP99]Beck, J., Chari, V. and Pressley, A., An algebraic characterization of the affine canonical basis, Duke Math. J. 99 (1999), 455487.CrossRefGoogle Scholar
[BK96]Beck, J. and Kac, V. G., Finite-dimensional representations of quantum affine algebras at roots of unity, J. Amer. Math. Soc. 9 (1996), 391423.CrossRefGoogle Scholar
[BT04]Benkart, G. and Terwilliger, P., Irreducible modules for the quantum affine algebra and its Borel subalgebra , J. Algebra 282 (2004), 172194.CrossRefGoogle Scholar
[Bow07]Bowman, J., Irreducible modules for the quantum affine algebra U q(𝔤) and its Borel subalgebra U q(𝔤)≥0, J. Algebra 316 (2007), 231253.CrossRefGoogle Scholar
[Cha01]Chari, V., On the fermionic formula and the Kirillov-Reshetikhin conjecture, Int. Math. Res. Not. 2001 (2001), 629654.CrossRefGoogle Scholar
[Cha02]Chari, V., Braid group actions and tensor products, Int. Math. Res. Not. 2002 (2002), 357382.CrossRefGoogle Scholar
[CG05]Chari, V. and Greenstein, J., Filtrations and completions of certain positive level modules of affine algebras, Adv. Math. 194 (2005), 296331.CrossRefGoogle Scholar
[CH10]Chari, V. and Hernandez, D., Beyond Kirillov-Reshetikhin modules, in Quantum affine algebras, extended affine Lie algebras, and their applications, Contemporary Mathematics, vol. 506 (American Mathematical Society, Providence, RI, 2010), 4981.CrossRefGoogle Scholar
[CP94]Chari, V. and Pressley, A., A guide to quantum groups (Cambridge University Press, Cambridge, 1994).Google Scholar
[CP95]Chari, V. and Pressley, A., Quantum affine algebras and their representations, in Representations of groups (Banff, AB, 1994), CMS Conference Proceedings, vol. 16 (American Mathematical Society, Providence, RI, 1995), 5978.Google Scholar
[CP01]Chari, V. and Pressley, A., Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191223 (electronic).CrossRefGoogle Scholar
[Dam98]Damiani, I., La ℛ-matrice pour les algèbres quantiques de type affine non tordu, Ann. Sci. Éc. Norm. Supér. 31 (1998), 493523.CrossRefGoogle Scholar
[Dri87]Drinfel’d, V., Quantum groups, in Proceedings of the International Congress of Mathematicians (Berkeley, August 3–11, 1986) (American Mathematical Society, Providence, RI, 1987), 798820.Google Scholar
[Dri88]Drinfel’d, V., A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36 (1988), 212216.Google Scholar
[FL07]Fourier, G. and Littelmann, P., Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), 566593.CrossRefGoogle Scholar
[Fre85]Frenkel, I., Representations of affine Kac-Moody algebras and dual resonance models, in Applications of group theory in physics and mathematical physics (Chicago, 1982), Lectures in Applied Mathematics, vol. 21 (American Mathematical Society, Providence, RI, 1985), 325353.Google Scholar
[FM01]Frenkel, E. and Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 2357.CrossRefGoogle Scholar
[FR99]Frenkel, E. and Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of W-algebras, in Recent Developments in Quantum Affine Algebras and related topics, Contemporary Mathematics, vol. 248 (American Mathematical Society, Providence, RI, 1999), 163205.CrossRefGoogle Scholar
[Her05]Hernandez, D., Representations of quantum affinizations and fusion product, Transform. Groups 10 (2005), 163200.CrossRefGoogle Scholar
[Her06]Hernandez, D., The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 6387.Google Scholar
[Her07]Hernandez, D., Drinfeld coproduct, quantum fusion tensor category and applications, Proc. Lond. Math. Soc. 95 (2007), 567608.CrossRefGoogle Scholar
[Her10]Hernandez, D., Simple tensor products, Invent. Math. 181 (2010), 649675.CrossRefGoogle Scholar
[HL10]Hernandez, D. and Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265341.CrossRefGoogle Scholar
[Jan96]Jantzen, J., Lectures on quantum groups, Graduate Studies in Mathematics, vol. 6 (American Mathematical Society, Providence, RI, 1996).Google Scholar
[Jim85]Jimbo, M., A q-difference analogue of 𝒰(𝔤) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 6369.CrossRefGoogle Scholar
[Kac90]Kac, V., Infinite dimensional Lie algebras, third edition (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
[Kas02]Kashiwara, M., On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117175.CrossRefGoogle Scholar
[KS95]Kazhdan, D. and Soibelman, Y., Representations of quantum affine algebras, Selecta Math. (N.S.) 1 (1995), 537595.CrossRefGoogle Scholar
[Koj08]Kojima, T., The Baxter’s Q-operator for the W-algebra W N, J. Phys. A 41 (2008), 355206.CrossRefGoogle Scholar
[Lec11]Leclerc, B., Quantum loop algebras, quiver varieties, and cluster algebras, in Representations of algebras and related topics, EMS Series of Congress Reports, vol. 5, eds Skowroński, A. and Yamagata, K. (European Mathematical Society, Zürich, 2011), 117152.CrossRefGoogle Scholar
[Nak01]Nakajima, H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145238.CrossRefGoogle Scholar
[Nak03]Nakajima, H., t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259274.CrossRefGoogle Scholar
[VV02]Varagnolo, M. and Vasserot, E., Standard modules of quantum affine algebras, Duke Math. J. 111 (2002), 509533.Google Scholar
[Ver03]Vershik, A., Two lectures on the asymptotic representation theory and statistics of Young diagrams, in Asymptotic combinatorics with applications to mathematical physics (St. Petersburg, 2001), Lecture Notes in Mathematics, vol. 1815 (Springer, Berlin, 2003), 161182.CrossRefGoogle Scholar
You have Access
43
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Asymptotic representations and Drinfeld rational fractions
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Asymptotic representations and Drinfeld rational fractions
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Asymptotic representations and Drinfeld rational fractions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *