Skip to main content
×
Home

Characters of equivariant ${\mathcal{D}}$ -modules on spaces of matrices

  • Claudiu Raicu (a1) (a2)
Abstract

We compute the characters of the simple $\text{GL}$ -equivariant holonomic ${\mathcal{D}}$ -modules on the vector spaces of general, symmetric, and skew-symmetric matrices. We realize some of these ${\mathcal{D}}$ -modules explicitly as subquotients in the pole order filtration associated to the $\text{determinant}/\text{Pfaffian}$ of a generic matrix, and others as local cohomology modules. We give a direct proof of a conjecture of Levasseur in the case of general and skew-symmetric matrices, and provide counterexamples in the case of symmetric matrices. The character calculations are used in subsequent work with Weyman to describe the ${\mathcal{D}}$ -module composition factors of local cohomology modules with determinantal and Pfaffian support.

Copyright
References
Hide All
[BGK+87] Borel A., Grivel P.-P., Kaup B., Haefliger A., Malgrange B. and Ehlers F., AlgebraicD-modules, Perspectives in Mathematics, vol. 2 (Academic Press, Boston, MA, 1987); MR 882000 89g:32014).
[BG99] Braden T. and Grinberg M., Perverse sheaves on rank stratifications , Duke Math. J. 96 (1999), 317362, doi:10.1215/S0012-7094-99-09609-6; MR 1666554 (2000f:14031).
[CL01] Coutinho S. C. and Levcovitz D., D-modules and étale morphisms , Comm. Algebra 29 (2001), 14871497, doi:10.1081/AGB-100002114; MR 1853107 (2002m:14014).
[GS] Grayson D. R. and Stillman M. E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.
[Har77] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977); MR 0463157 (57 #3116).
[HTT08] Hotta R., Takeuchi K. and Tanisaki T., D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236 (Birkhäuser, Boston, MA, 2008); MR 2357361 (2008k:32022).
[Kas76] Kashiwara M., B-functions and holonomic systems. Rationality of roots of B-functions , Invent. Math. 38 (1976–1977), 3353; MR 0430304 (55 #3309).
[Kem78] Kempf G., The Grothendieck–Cousin complex of an induced representation , Adv. Math. 29 (1978), 310396, doi:10.1016/0001-8708(78)90021-X; MR 509802 (80g:14042).
[Kim03] Kimura T., Introduction to prehomogeneous vector spaces, Translations of Mathematical Monographs, vol. 215 (American Mathematical Society, Providence, RI, 2003); MR 1944442 (2003k:11180).
[Lev09] Levasseur T., Radial components, prehomogeneous vector spaces, and rational Cherednik algebras , Int. Math. Res. Not. IMRN 3 (2009), 462511, doi:10.1093/imrn/rnn137; MR 2482122 (2010g:22028).
[Mac95] Macdonald I. G., Symmetric functions and Hall polynomials, second edition, Oxford Mathematical Monographs (The Clarendon Press–Oxford University Press, New York, 1995), with contributions by A. Zelevinsky; MR 1354144 (96h:05207).
[MV86] MacPherson R. and Vilonen K., Elementary construction of perverse sheaves , Invent. Math. 84 (1986), 403435, doi:10.1007/BF01388812; MR 833195 (87m:32028).
[Nan08] Nang P., On a class of holonomic D-modules on M n (ℂ) related to the action of GL n (ℂ) × GL n (ℂ) , Adv. Math. 218 (2008), 635648, doi:10.1016/j.aim.2008.01.001; MR 2414315 (2009c:14028).
[Nan12] Nang P., On the classification of regular holonomic D-modules on skew-symmetric matrices , J. Algebra 356 (2012), 115132, doi:10.1016/j.jalgebra.2012.01.021; MR 2891125.
[Rai16] Raicu C., Characters of equivariant inline-graphic ${\mathcal{D}}$ -modules on Veronese cones, Trans. Amer. Math. Soc. (2016), doi:10.1090/tran/6713.
[RW14] Raicu C. and Weyman J., Local cohomology with support in generic determinantal ideals , Algebra Number Theory 8 (2014), 12311257, doi:10.2140/ant.2014.8.1231; MR 3263142.
[RW15] Raicu C. and Weyman J., Local cohomology with support in ideals of symmetric minors and Pfaffians, J. Lond. Math. Soc. (2), to appear. Preprint (2015), arXiv:1509.03954.
[RWW14] Raicu C., Weyman J. and Witt E. E., Local cohomology with support in ideals of maximal minors and sub-maximal Pfaffians , Adv. Math. 250 (2014), 596610, doi:10.1016/j.aim.2013.10.005; MR 3122178.
[Sai15] Saito M., inline-graphic ${\mathcal{D}}$ -modules generated by rational powers of holomorphic functions, Preprint (2015), arXiv:1507.01877.
[VdB99] Van den Bergh M., Local cohomology of modules of covariants , Adv. Math. 144 (1999), 161220, doi:10.1006/aima.1998.1809; MR 1695237 (2000d:14051).
[Vil85] Vilonen K., Intersection homology D-module on local complete intersections with isolated singularities , Invent. Math. 81 (1985), 107114, doi:10.1007/BF01388774; MR 796193 (87f:32023).
[Wal15] Walther U., Survey on the D-module f s , in Commutative algebra and noncommutative algebraic geometry, Vol. 1, Mathematical Sciences Research Institute Publications, vol. 67 (Cambridge University Presss, Cambridge, 2015), 391430, with an appendix by A. Leykin.
[Wey03] Weyman J., Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149 (Cambridge University Press, Cambridge, 2003); MR 1988690 (2004d:13020).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 192 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th November 2017. This data will be updated every 24 hours.