[Aig13]
Aigner, M.,
*Markov’s theorem and 100 years of the uniqueness conjecture*
, in A mathematical journey from irrational numbers to perfect matchings (Springer, Cham, 2013).

[BFGST16]
Baur, K., Faber, E., Gratz, S., Serhiyenko, K. and Todorov, G., *Mutation of friezes*, Preprint (2016), arXiv:1612.05374.
[BZ11]
Brüstle, T. and Zhang, J.,
*On the cluster category of a marked surface without punctures*
, Algebra Number Theory
5 (2011), 529–566.

[CF17]
Çanakçı, İ. and Felikson, A., *Infinite rank surface cluster algebras*, Preprint (2017),arXiv:1704.01826.
[CS13]
Çanakçı, İ. and Schiffler, R.,
*Snake graph calculus and cluster algebras from surfaces*
, J. Algebra
382 (2013), 240–281.

[CS15]
Çanakçı, İ. and Schiffler, R.,
*Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs*
, Math. Z.
281 (2015), 55–102.

[CS17a]
Çanakçı, İ. and Schiffler, R., *Snake graphs and continued fractions*, Preprint (2017), arXiv:1711.02461.
[CS17b]
Çanakçı, İ. and Schiffler, R.,
*Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings*
, Int. Math. Res. Not. IMRN (2017), doi:10.1093/imrn/rnx157.
[Cox71]
Coxeter, H. S. M.,
*Frieze patterns*
, Acta Arith.
18 (1971), 298–310.

[DFK10]
Di Francesco, P. and Kedem, R.,
*Q-systems, heaps, paths and cluster positivity*
, Comm. Math. Phys.
293 (2010), 727–802.

[FST08]
Fomin, S., Shapiro, M. and Thurston, D.,
*Cluster algebras and triangulated surfaces. Part I: cluster complexes*
, Acta Math.
201 (2008), 83–146.

[FZ02]
Fomin, S. and Zelevinsky, A.,
*Cluster algebras I: foundations*
, J. Amer. Math. Soc.
15 (2002), 497–529.

[FZ07]
Fomin, S. and Zelevinsky, A.,
*Cluster algebras IV: coefficients*
, Compos. Math.
143 (2007), 112–164.

[GG14]
Grabowski, J. and Gratz, S.,
*Cluster algebras of infinite rank*
, J. Lond. Math. Soc. (2)
89 (2014), 337–363.

[HW60]
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, fourth edition (Clarendon Press, Oxford, 1960).

[HJ12]
Holm, T. and Jorgensen, P.,
*On a cluster category of infinite Dynkin type, and the relation to triangulations of the infinity-gon*
, Math. Z.
270 (2012), 277–295.

[IT15]
Igusa, K. and Todorov, G.,
*Continuous cluster categories I*
, Algebr. Represent. Theory
18 (2015), 65–101.

[Lab16]
Labardini-Fragoso, D.,
*Quivers with potentials associated to triangulated surfaces, part IV: removing boundary assumptions*
, Selecta Math. (N.S.)
22 (2016), 145–189.

[LS15]
Lee, K. and Schiffler, R.,
*Positivity for cluster algebras*
, Ann. of Math. (2)
182 (2015), 73–125.

[LP17]
Liu, S. and Paquette, C.,
*Cluster categories of type A*_{
∞
}
^{
∞
} and triangulations of the infinite strip
, Math. Z.
286 (2017), 197–222.

[Mui60]
Muir, T., A treatise on the theory of determinants (Dover, New York, 1960), revised and enlarged by William H. Metzler.

[MS10]
Musiker, G. and Schiffler, R.,
*Cluster expansion formulas and perfect matchings*
, J. Algebraic Combin.
32 (2010), 187–209.

[MSW11]
Musiker, G., Schiffler, R. and Williams, L.,
*Positivity for cluster algebras from surfaces*
, Adv. Math.
227 (2011), 2241–2308.

[MSW13]
Musiker, G., Schiffler, R. and Williams, L.,
*Bases for cluster algebras from surfaces*
, Compos. Math.
149 (2013), 217–263.

[NS16]
Nakanishi, T. and Stella, S.,
*Wonder of sine-Gordon **Y*-systems
, Trans. Amer. Math. Soc.
368 (2016), 6835–6886.

[Pal08]
Palu, Y.,
*Cluster characters for 2-Calabi-Yau triangulated categories*
, Ann. Inst. Fourier (Grenoble)
58 (2008), 2221–2248.

[Pro05]
Propp, J., *The combinatorics of frieze patterns and Markoff numbers*, Preprint (2005), arXiv:0511633.
[QZ17]
Qiu, Y. and Zhou, Y.,
*Cluster categories for marked surfaces: punctured case*
, Compos. Math.
153 (2017), 1779–1819.

[Sch16]
Schiffler, R.,
*Lecture notes on cluster algebras from surfaces*
, in Homological methods, representation theory and cluster algebras: Proceedings of the CIMPA School, Mar del Plata, 2016, CRM Short Courses, eds Assem, I. and Trepode, S. (Springer), to appear.

[Ust06]
Ustinov, A. V.,
*A short proof of Euler’s identity for continuants*
, Mat. Zametki
79 (2006), 155–156 (Russian). Translation: Math. Notes **79** (2006), 146–147.