Skip to main content Accessibility help
×
Home

Counting imaginary quadratic points via universal torsors

  • Ulrich Derenthal (a1) and Christopher Frei (a2)

Abstract

A conjecture of Manin predicts the distribution of rational points on Fano varieties. We provide a framework for proofs of Manin’s conjecture for del Pezzo surfaces over imaginary quadratic fields, using universal torsors. Some of our tools are formulated over arbitrary number fields. As an application, we prove Manin’s conjecture over imaginary quadratic fields $K$ for the quartic del Pezzo surface $S$ of singularity type ${\boldsymbol{A}}_{3}$ with five lines given in ${\mathbb{P}}_{K}^{4}$ by the equations ${x}_{0}{x}_{1}-{x}_{2}{x}_{3}={x}_{0}{x}_{3}+{x}_{1}{x}_{3}+{x}_{2}{x}_{4}=0$ .

Copyright

References

Hide All
[BB13]Baier, S. and Browning, T. D., Inhomogeneous cubic congruences and rational points on del Pezzo surfaces, J. reine angew. Math. 680 (2013), 69151.
[BBS14]Blomer, V., Brüdern, J. and Salberger, P., On a certain senary cubic form, Proc. Lond. Math. Soc. (3) 108 (2014), 911964.
[BD09a]Browning, T. D. and Derenthal, U., Manin’s conjecture for a cubic surface with D 5singularity, Int. Math. Res. Not. IMRN 2009 (2009), 26202647.
[BD09b]Browning, T. D. and Derenthal, U., Manin’s conjecture for a quartic del Pezzo surface with A 4singularity, Ann. Inst. Fourier (Grenoble) 59 (2009), 12311265.
[BD13]Baier, S. and Derenthal, U., Quadratic congruences on average and rational points on cubic surfaces, Preprint (2013), arXiv:1205.0373v2.
[Bir62]Birch, B. J., Forms in many variables, Proc. Roy. Soc. Ser. A 265 (1961/1962), 245263.
[BM90]Batyrev, V. V. and Manin, Yu. I., Sur le nombre des points rationnels de hauteur bornè des variétés algébriques, Math. Ann. 286 (1990), 2743.
[Bro09]Browning, T. D., Quantitative arithmetic of projective varieties, Progress in Mathematics, vol. 277 (Birkhäuser, Basel, 2009).
[BT95]Batyrev, V. V. and Tschinkel, Yu., Rational points of bounded height on compactifications of anisotropic tori, Int. Math. Res. Not. IMRN 1995 (1995), 591635.
[BT98a]Batyrev, V. V. and Tschinkel, Yu., Manin’s conjecture for toric varieties, J. Algebraic Geom. 7 (1998), 1553.
[BT98b]Batyrev, V. V. and Tschinkel, Yu., Tamagawa numbers of polarized algebraic varieties, in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251 (1998), 299340.
[Cas97]Cassels, J. W. S., An introduction to the geometry of numbers, Corrected reprint of the 1971 edition, Classics in Mathematics (Springer, Berlin, 1997).
[CLT02]Chambert-Loir, A. and Tschinkel, Yu., On the distribution of points of bounded height on equivariant compactifications of vector groups, Invent. Math. 148 (2002), 421452.
[Cos00]Coste, M., An Introduction to Semialgebraic Geometry. Dottorato di ricerca in matematica/Università di Pisa, Dipartimento di Matematica. Istituti Editoriali e Poligrafici Internazionali, 2000.
[CTS87]Colliot-Thélène, J.-L. and Sansuc, J.-J., La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), 375492.
[Dav51]Davenport, H., On a principle of Lipschitz, J. Lond. Math. Soc. 26 (1951), 179183.
[dlB02]de la Bretèche, R., Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5, Duke Math. J. 113 (2002), 421464.
[dlB07]de la Bretèche, R., Répartition des points rationnels sur la cubique de Segre, Proc. Lond. Math. Soc. (3) 95 (2007), 69155.
[dlBB07a]de la Bretèche, R. and Browning, T. D., On Manin’s conjecture for singular del Pezzo surfaces of degree 4. I, Michigan Math. J. 55 (2007), 5180.
[dlBB07b]de la Bretèche, R. and Browning, T. D., On Manin’s conjecture for singular del Pezzo surfaces of degree four. II, Math. Proc. Cambridge Philos. Soc. 143 (2007), 579605.
[dlBB11]de la Bretèche, R. and Browning, T. D., Manin’s conjecture for quartic del Pezzo surfaces with a conic fibration, Duke Math. J. 160 (2011), 169.
[dlBB12]de la Bretèche, R. and Browning, T. D., Binary forms as sums of two squares and Châtelet surfaces, Israel J. Math. 191 (2012), 9731012.
[dlBBD07]de la Bretèche, R., Browning, T. D. and Derenthal, U., On Manin’s conjecture for a certain singular cubic surface, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 150.
[dlBBP12]de la Bretèche, R., Browning, T. D. and Peyre, E., On Manin’s conjecture for a family of Châtelet surfaces, Ann. of Math. (2) 175 (2012), 297343.
[dlBT13]de la Bretèche, R. and Tenenbaum, G., Sur la conjecture de Manin pour certaines surfaces de Châtelet, J. Inst. Math. Jussieu 12 (2013), 759819.
[DEJ14]Derenthal, U., Elsenhans, A.-S. and Jahnel, J., On the factor alpha in Peyre’s constant, Math. Comp. 83 (2014), 965977.
[Der07a]Derenthal, U., On a constant arising in Manin’s conjecture for del Pezzo surfaces, Math. Res. Lett. 14 (2007), 481489.
[Der07b]Derenthal, U., Manin’s conjecture for a quintic del Pezzo surface with ${\boldsymbol{A}}_{2}$ singularity, Preprint (2007), arXiv:0710.1583v1.
[Der09]Derenthal, U., Counting integral points on universal torsors, Int. Math. Res. Not. IMRN 2009 (2009), 26482699.
[Der14]Derenthal, U., Singular del Pezzo surfaces whose universal torsors are hypersurfaces, Proc. Lond. Math. Soc. (3) 108 (2014), 638681.
[DF14a]Derenthal, U. and Frei, C., Counting imaginary quadratic points via universal torsors, II, Math. Proc. Cambridge Philos. Soc. 156 (2014), 383407.
[DF14b]Derenthal, U. and Frei, C., On Manin’s conjecture for a certain singular cubic surface over imaginary quadratic fields, Int. Math. Res. Not. IMRN (2014), published online, doi: 10.1093/imrn/rnu016.
[DJ13]Derenthal, U. and Janda, F., Gaussian rational points on a singular cubic surface, in Torsors, étale homotopy and applications to rational points – Proceedings of the ICMS workshop in Edinburgh, 10–14 January 2011, London Mathematical Society Lecture Note Series, vol. 405 (Cambridge University Press, Cambridge, 2013), 210231.
[DJT08]Derenthal, U., Joyce, M. and Teitler, Z., The nef cone volume of generalized del Pezzo surfaces, Algebra Number Theory 2 (2008), 157182.
[DL10]Derenthal, U. and Loughran, D., Singular del Pezzo surfaces that are equivariant compactifications, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 2643; 241.
[DL13]Derenthal, U. and Loughran, D., Equivariant compactifications of two-dimensional algebraic groups, Proc. Edinb. Math. Soc. (2), to appear, arXiv:1212.3518v2 (2013).
[DT07]Derenthal, U. and Tschinkel, Yu., Universal torsors over del Pezzo surfaces and rational points, in Equidistribution in number theory, an introduction, NATO Sci. Ser. II Math. Phys. Chem., vol. 237 (Springer, Dordrecht, 2007), 169196.
[Des13]Destagnol, K., La conjecture de Manin sur les surfaces de Châtelet, Master’s thesis, Université Paris 7 Diderot (2013).
[FMT89]Franke, J., Manin, Yu. I. and Tschinkel, Yu., Rational points of bounded height on Fano varieties, Invent. Math. 95 (1989), 421435.
[Fre13]Frei, C., Counting rational points over number fields on a singular cubic surface, Algebra Number Theory 7 (2013), 14511479.
[Kai13]Kaiser, T., Integration of semialgebraic functions and integrated Nash functions, Math. Z. 275 (2013), 349366.
[Lan94]Lang, S., Algebraic number theory, Graduate Texts in Mathematics, vol. 110, second edition (Springer, New York, 1994).
[LB12a]Le Boudec, P., Manin’s conjecture for a quartic del Pezzo surface with A3singularity and four lines, Monatsh. Math. 167 (2012), 481502.
[LB12b]Le Boudec, P., Manin’s conjecture for two quartic del Pezzo surfaces with 3A1and A1+ A2singularity types, Acta Arith. 151 (2012), 109163.
[LB13]Le Boudec, P., Affine congruences and rational points on a certain cubic surface, Algebra Number Theory, to appear, arXiv:1207.2685v2 (2013).
[Lou10]Loughran, D., Manin’s conjecture for a singular sextic del Pezzo surface, J. Théor. Nombres Bordeaux 22 (2010), 675701.
[Lou12]Loughran, D., Manin’s conjecture for a singular quartic del Pezzo surface, J. Lond. Math. Soc. (2) 86 (2012), 558584.
[Lou13]Loughran, D., Rational points of bounded height and the Weil restriction, Preprint (2013),arXiv:1210.1792v2.
[LR98]Lion, J.-M. and Rolin, J.-P., Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques, Ann. Inst. Fourier (Grenoble) 48 (1998), 755767.
[MV07]Masser, D. and Vaaler, J. D., Counting algebraic numbers with large height. II, Trans. Amer. Math. Soc. 359 (2007), 427445.
[Nar90]Narkiewicz, W., Elementary and analytic theory of algebraic numbers, second edition (Springer, Berlin, 1990).
[Pey95]Peyre, E., Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. 79 (1995), 101218.
[Pey98]Peyre, E., Terme principal de la fonction zêta des hauteurs et torseurs universels, in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251 (1998), 259298.
[Pey03]Peyre, E., Points de hauteur bornée, topologie adélique et mesures de Tamagawa, in Les XXIIèmes Journées Arithmetiques (Lille, 2001), J. Théor. Nombres Bordeaux 15 (2003), 319–349.
[PT01]Peyre, E. and Tschinkel, Yu., Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp. 70 (2001), 367387.
[Sal98]Salberger, P., Tamagawa measures on universal torsors and points of bounded height on Fano varieties, in Nombre et répartition de points de hauteur bornée (Paris, 1996), Astérisque 251 (1998), 91258.
[Sch79]Schanuel, S., Heights in number fields, Bull. Soc. Math. France 107 (1979), 433449.
[Sch95]Schmidt, W. M., Northcott’s theorem on heights. II. The quadratic case, Acta Arith. 70 (1995), 343375.
[Ski97]Skinner, C. M., Forms over number fields and weak approximation, Compositio Math. 106 (1997), 1129.
[TT12]Tanimoto, S. and Tschinkel, Yu., Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups, in Zeta functions in algebra and geometry, Contemporary Mathematics, vol. 566 (American Mathematical Society, Providence, RI, 2012), 119157.
[vdD98]van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248 (Cambridge University Press, Cambridge, 1998).
[Wid12]Widmer, M., Lipschitz class, narrow class, and counting lattice points, Proc. Amer. Math. Soc. 140 (2012), 677689.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed