Skip to main content
×
×
Home

Derived categories of Gushel–Mukai varieties

  • Alexander Kuznetsov (a1) (a2) (a3) and Alexander Perry (a4)
Abstract

We study the derived categories of coherent sheaves on Gushel–Mukai varieties. In the derived category of such a variety, we isolate a special semiorthogonal component, which is a K3 or Enriques category according to whether the dimension of the variety is even or odd. We analyze the basic properties of this category using Hochschild homology, Hochschild cohomology, and the Grothendieck group. We study the K3 category of a Gushel–Mukai fourfold in more detail. Namely, we show this category is equivalent to the derived category of a K3 surface for a certain codimension 1 family of rational Gushel–Mukai fourfolds, and to the K3 category of a birational cubic fourfold for a certain codimension 3 family. The first of these results verifies a special case of a duality conjecture which we formulate. We discuss our results in the context of the rationality problem for Gushel–Mukai varieties, which was one of the main motivations for this work.

Copyright
References
Hide All
[AHTV16] Addington, N., Hassett, B., Tschinkel, Y. and Várilly-Alvarado, A., Cubic fourfolds fibered in sextic del Pezzo surfaces, Preprint (2016), arXiv:1606.05321.
[AT14] Addington, N. and Thomas, R., Hodge theory and derived categories of cubic fourfolds , Duke Math. J. 163 (2014), 18851927.
[Bea77] Beauville, A., Variétés de Prym et jacobiennes intermediaires , Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 309391.
[BGS14] Böhning, C., Graf von Bothmer, H.-C. and Sosna, P., On the Jordan–Hölder property for geometric derived categories , Adv. Math. 256 (2014), 479492.
[Bon89] Bondal, A., Representations of associative algebras and coherent sheaves , Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 2544.
[BK90] Bondal, A. and Kapranov, M., Representable functors, Serre functors, and mutations , Math. USSR-Izv. 35 (1990), 519541.
[CT16] Calabrese, J. and Thomas, R., Derived equivalent Calabi–Yau threefolds from cubic fourfolds , Math. Ann. 365 (2016), 155172.
[CM78] Conte, A. and Murre, J. P., The Hodge conjecture for fourfolds admitting a covering by rational curves , Math. Ann. 238 (1978), 7988.
[DIM15] Debarre, O., Iliev, A. and Manivel, L., Special prime Fano fourfolds of degree 10 and index 2 , in Recent advances in algebraic geometry, London Mathematical Society Lecture Note Series, vol. 417 (Cambridge University Press, Cambridge, 2015), 123155.
[DK17] Debarre, O. and Kuznetsov, A., Gushel–Mukai varieties: linear spaces and periods, Kyoto J. Math., to appear. Preprint (2017), arXiv:1605.05648.
[DK18a] Debarre, O. and Kuznetsov, A., Gushel–Mukai varieties: classification and birationalities , Algebr. Geom. 5 (2018), 1576.
[DK18b] Debarre, O. and Kuznetsov, A., Gushel–Mukai varieties: moduli stacks and coarse moduli spaces (2018), in preparation.
[DV10] Debarre, O. and Voisin, C., Hyper-Kähler fourfolds and Grassmann geometry , J. Reine Angew. Math. 649 (2010), 6387.
[Ful98] Fulton, W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 2, second edition (Springer, Berlin, 1998).
[Gus83] Gushel, N. P., On Fano varieties of genus 6 , Izv. Math. 21 (1983), 445459.
[Has00] Hassett, B., Special cubic fourfolds , Compos. Math. 120 (2000), 123.
[Huy16] Huybrechts, D., Lectures on K3 Surfaces, Cambridge Studies in Advanced Mathematics, vol. 158 (Cambridge University Press, Cambridge, 2016).
[Huy17] Huybrechts, D., The K3 category of a cubic fourfold , Compos. Math. 153 (2017), 586620.
[IKKR16] Iliev, A., Kapustka, G., Kapustka, M. and Ranestad, K., EPW cubes, J. Reine Angew. Math., to appear. Preprint (2016), arXiv:1505.02389.
[IM11] Iliev, A. and Manivel, L., Fano manifolds of degree ten and EPW sextics , Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 393426.
[Küc95] Küchle, O., On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians , Math. Z. 218 (1995), 563575.
[Kuz04] Kuznetsov, A., Derived categories of cubic and V 14 threefolds , Tr. Mat. Inst. Steklova 246 (2004), 183207.
[Kuz06] Kuznetsov, A., Hyperplane sections and derived categories , Izv. Math. 70 (2006), 447547.
[Kuz07] Kuznetsov, A., Homological projective duality , Publ. Math. Inst. Hautes Études Sci. 105 (2007), 157220.
[Kuz09a] Kuznetsov, A., Derived categories of Fano threefolds , Tr. Mat. Inst. Steklova 264 (2009), 116128.
[Kuz09b] Kuznetsov, A., Hochschild homology and semiorthogonal decompositions, Preprint (2009),arXiv:0904.4330.
[Kuz10] Kuznetsov, A., Derived categories of cubic fourfolds , in Cohomological and geometric approaches to rationality problems, Progress in Mathematics, vol. 282 (Birkhäuser, Boston, MA, 2010), 219243.
[Kuz14] Kuznetsov, A., Semiorthogonal decompositions in algebraic geometry , in Proceedings of the international congress of mathematicians (Seoul, 2014), Vol. II (Kyung Moon Sa, Seoul, 2014), 635660.
[Kuz15a] Kuznetsov, A., Height of exceptional collections and Hochschild cohomology of quasiphantom categories , J. Reine Angew. Math. 708 (2015), 213243.
[Kuz15b] Kuznetsov, A., On Küchle varieties with Picard number greater than 1 , Izv. Math. 79 (2015), 698709.
[Kuz16a] Kuznetsov, A., Calabi–Yau and fractional Calabi–Yau categories , J. Reine Angew. Math., to appear. Preprint (2016), arXiv:1509.07657.
[Kuz16b] Kuznetsov, A., Derived categories view on rationality problems (Springer, Cham, 2016), 67104.
[Kuz16c] Kuznetsov, A., Küchle fivefolds of type c5 , Math. Z. 284 (2016), 12451278.
[KP17] Kuznetsov, A. and Perry, A., Derived categories of cyclic covers and their branch divisors , Selecta Math. (N.S.) 23 (2017), 389423.
[KP18] Kuznetsov, A. and Perry, A., Categorical joins, in preparation (2018).
[Laz04] Lazarsfeld, R., Positivity in algebraic geometry I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, vol. 48 (Springer, Berlin, 2004).
[Log12] Logachev, D., Fano threefolds of genus 6 , Asian J. Math. 16 (2012), 515559.
[MS12] Macrì, E. and Stellari, P., Fano varieties of cubic fourfolds containing a plane , Math. Ann. 354 (2012), 11471176.
[Mar09] Markarian, N., The Atiyah class, Hochschild cohomology and the Riemann–Roch theorem , J. Lond. Math. Soc. (2) 79 (2009), 129143.
[Muk89] Mukai, S., Biregular classification of Fano 3-folds and Fano manifolds of coindex 3 , Proc. Natl Acad. Sci. USA 86 (1989), 30003002.
[Mum66] Mumford, D., Lectures on curves on an algebraic surface, Annals of Mathematics Studies, vol. 59 (Princeton University Press, Princeton, NJ, 1966); with a section by G. M. Bergman.
[Nag98] Nagel, J., The generalized Hodge conjecture for the quadratic complex of lines in projective four-space , Math. Ann. 312 (1998), 387401.
[O’Gr06] O’Grady, K. G., Irreducible symplectic 4-folds and Eisenbud–Popescu–Walter sextics , Duke Math. J. 134 (2006), 99137.
[O’Gr08] O’Grady, K. G., Dual double EPW-sextics and their periods , Pure Appl. Math. Q. 4 (2008), 427468.
[O’Gr12] O’Grady, K. G., EPW-sextics: taxonomy , Manuscripta Math. 138 (2012), 221272.
[O’Gr13] O’Grady, K. G., Double covers of EPW-sextics , Michigan Math. J. 62 (2013), 143184.
[O’Gr15] O’Grady, K. G., Periods of double EPW-sextics , Math. Z. 280 (2015), 485524.
[O’Gr16] O’Grady, K. G., Moduli of double EPW-sextics , Mem. Amer. Math. Soc. 240 (2016).
[Oka11] Okawa, S., Semi-orthogonal decomposability of the derived category of a curve , Adv. Math. 228 (2011), 28692873.
[Orl16] Orlov, D., Smooth and proper noncommutative schemes and gluing of DG categories , Adv. Math. 302 (2016), 59105.
[Per18] Perry, A., Hochschild cohomology and group actions, Preprint (2018).
[Pol14] Polishchuk, A., Lefschetz type formulas for dg-categories , Selecta Math. (N.S.) 20 (2014), 885928.
[Ser06] Sernesi, E., Deformations of Algebraic Schemes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 334 (Springer, Berlin, 2006).
[She92] Shepherd-Barron, N. I., The rationality of quintic Del Pezzo surfaces—a short proof , Bull. Lond. Math. Soc. 24 (1992), 249250.
[Sta17]The Stacks Project Authors, Stacks project, http://stacks.math.columbia.edu (2017).
[Tho17] Thomas, R., Notes on HPD , in Proceedings of the AMS summer institute in algebraic geometry, Utah 2015, to appear. Preprint (2017), arXiv:1512.08985.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 67 *
Loading metrics...

* Views captured on Cambridge Core between 25th May 2018 - 23rd June 2018. This data will be updated every 24 hours.