Skip to main content
×
Home
    • Aa
    • Aa

Higher symmetries of powers of the Laplacian and rings of differential operators

  • T. Levasseur (a1) and J. T. Stafford (a2)
Abstract

We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries $\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$ . The connection is made through the construction of a highest-weight representation of $\mathfrak{g}$ via the ring of differential operators ${\mathcal{D}}(X)$ on the singular scheme $X=(\mathtt{F}^{r}=0)\subset \mathbb{C}^{n}$ , for $\mathtt{F}=\sum _{j=1}^{n}X_{i}^{2}\in \mathbb{C}[X_{1},\ldots ,X_{n}]$ . In particular, we prove that $U(\mathfrak{g})/K_{r}\cong \mathscr{S}(\Box ^{r})\cong {\mathcal{D}}(X)$ for a certain primitive ideal $K_{r}$ . Interestingly, if (and only if) $n$ is even with $r\geqslant n/2$ , then both $\mathscr{S}(\Box ^{r})$ and its natural module ${\mathcal{A}}=\mathbb{C}[\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n},\ldots ,\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n}]/(\Box ^{r})$ have a finite-dimensional factor. The same holds for the ${\mathcal{D}}(X)$ -module ${\mathcal{O}}(X)$ . We also study higher-dimensional analogues $M_{r}=\{x\in A:\Box ^{r}(x)=0\}$ of the module of harmonic elements in $A=\mathbb{C}[X_{1},\ldots ,X_{n}]$ and of the space of ‘harmonic densities’. In both cases we obtain a minimal $\mathfrak{g}$ -representation that is closely related to the $\mathfrak{g}$ -modules ${\mathcal{O}}(X)$ and ${\mathcal{A}}$ . Essentially all these results have real analogues, with the Laplacian replaced by the d’Alembertian $\Box _{p}$ on the pseudo-Euclidean space $\mathbb{R}^{p,q}$ and with $\mathfrak{g}$ replaced by the real Lie algebra $\mathfrak{so}(p+1,q+1)$ .

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

V. G. Bagrov and D. M. Gitman , Exact solutions of relativistic wave equations, Mathematics and its Applications (Soviet Series), vol. 39 (Kluwer, Dordrecht, 1990).

X. Bekaert , Comments on higher-spin symmetries , Int. J. Geom. Methods Mod. Phys. 6 (2009), 285342.

X. Bekaert and M. Grigoriev , Higher order singletons, partially massless fields and their boundary values in the ambient approach , Nuclear Phys. B 876 (2013), 667714.

J. N. Bernstein , I. M. Gelfand and S. I. Gelfand , Differential operators on the cubic cone , Russian Math. Surveys 27 (1972), 466488.

B. Binegar and R. Zierau , Unitarization of a singular representation of SO(p, q) , Commun. Math. Phys. 138 (1991), 245258.

C. P. Boyer , E. G. Kalnins and W. Miller Jr., Symmetry and separation of variables for the Helmholtz and Laplacian equations , Nagoya Math. J. 60 (1976), 3580.

H. Dietrich , P. Faccin and W. de Graaf , Computing with real Lie algebras: real forms, Cartan decompositions and Cartan subalgebras , J. Symbolic Comput. 56 (2013), 2745.

P. A. M. Dirac , The electron wave equation in de-Sitter space , Ann. of Math. (2) 36 (1935), 657669.

P. A. M. Dirac , Wave equations in conformal space , Ann. of Math. (2) 37 (1936), 429442.

M. G. Eastwood , Higher symmetries of the Laplacian , Ann. of Math. (2) 161 (2005), 16451665.

M. G. Eastwood and C. R. Graham , Invariants of conformal densities , Duke Math. J. 63 (1991), 633671.

M. G. Eastwood and T. Leistner , Higher symmetries of the square of the Laplacian , in Symmetries and overdetermined systems of partial differential equations, The IMA Volumes in Mathematics and its Applications, vol. 144 (Springer, New York, 2008), 319338.

A. R. Gover and J. Šilhan , Higher symmetries of the conformal powers of the Laplacian on conformally flat manifolds , J. Math. Phys. 53 (2012), article no. 032301; arXiv:0911.5265.

A. Grothendieck , Éléments de Géométrie Algébrique IV , Publ. Math. Inst. Hautes Études Sci. 20 (1967), 5259.

R. Howe , Remarks on classical invariant theory , Trans. Amer. Math. Soc. 313 (1989), 539570.

J. C. Jantzen , Einhüllende Algebren halbeinfacher Lie-Algebren (Springer, Berlin, 1983).

A. Joseph , Kostant’s problem, Goldie rank and the Gelfand–Kirillov conjecture , Invent. Math. 56 (1980), 191213.

A. Joseph , On the associated variety of a primitive ideal , J. Algebra 93 (1985), 509523.

A. Joseph , A surjectivity theorem for rigid highest weight modules , Invent. Math. 92 (1988), 567596.

A. Joseph , Rings which are modules in the Bernstein–Gelfand–Gelfand 𝓞 category , J. Algebra 113 (1988), 110126.

T. Kobayashi and B. Ørsted , Analysis on the minimal representation of O(p, q) III. Ultrahyperbolic equations on ℝ p-1, q-1 , Adv. Math. 180 (2003), 551595.

T. Levasseur , S. P. Smith and J. T. Stafford , The minimal nilpotent orbit, the Joseph ideal, and differential operators , J. Algebra 116 (1988), 480501.

J.-P. Michel , Higher symmetries of the Laplacian via quantization , Ann. Inst. Fourier 64 (2014), 15811609.

I. Musson , Rings of differential operators and zero divisors , J. Algebra 125 (1989), 489501.

P. Somberg , Deformations of quadratic algebras, the Joseph ideal for classical Lie algebras, and special tensors , in Symmetries and overdetermined systems of partial differential equations, The IMA Volumes in Mathematics and its Applications, vol. 144 (Springer, New York, 2008), 527536.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between 8th March 2017 - 24th September 2017. This data will be updated every 24 hours.