Skip to main content Accessibility help
×
Home

Hilbert modular forms and p-adic Hodge theory

  • Takeshi Saito (a1)

Abstract

For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hilbert modular forms and p-adic Hodge theory
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hilbert modular forms and p-adic Hodge theory
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hilbert modular forms and p-adic Hodge theory
      Available formats
      ×

Copyright

References

Hide All
[1]Blasius, D. and Rogawski, J., Motives for Hilbert modular forms, Invent. Math. 114 (1993), 5587.
[2]Carayol, H., Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), 151230.
[3]Carayol, H., Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), 409468.
[4]Crew, R., F-isocrystals and their monodromy groups, Ann. Sci. École Norm. Sup. (4) 25 (1992), 429464.
[5]de Jong, A. J., Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 83 (1996), 5193.
[6]Deligne, P., Travaux de Shimura, in Séminaire Bourbaki, Fév. 1971, exp. 389, Lecture Notes in Mathematics, vol. 244 (Springer, Berlin, 1971), 123165.
[7]Deligne, P., Formes modulaires et représentations de GL(2), in Modular Forms of One Variable II, Lecture Notes in Mathematics, vol. 349, eds P. Deligne and W. Kuyk (Springer, Berlin, 1973), 55105.
[8]Deligne, P. and Mumford, D., The irreducibility of the space of curves of given genus, Publ. Math. Inst. Hautes Études Sci. 36 (1969), 75109.
[9]Fontaine, J.-M., Représentations -adiques potentiellement semi-stables, in Périodes p-adiques, Astérisque 223 (1994), 321348.
[10]Gillet, H. and Messing, W., Cycle classes and Riemann-Roch for crystalline cohomology, Duke Math. J. 55 (1987), 501538.
[11]Gros, M., Classes de Chern et classes de cycles en cohomologie logarithmique, Bull. Soc. Math. France 113 (1985).
[12]Grothendieck, A., Un théorème sur les homomorphismes de schémas abeliens, Invent. Math. 2 (1966), 5978.
[13]Illusie, L., Autour du théorème de monodromie locale, in Périodes p-adiques, Astérisque 223 (1994), 958.
[14]Jacquet, H. and Langlands, R. P., Automorphic forms on GL 2, Lecture Notes in Mathematics, vol. 114 (Springer, Berlin, 1970).
[15]Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513546.
[16]Liu, T., Lattices in filtered (φ,N)-modules, Preprint,http://www.math.purdue.edu/∼tongliu/pub/wd.pdf.
[17]Milne, J. S., Canonical models of (mixed) Shimura varieties and automorphic vector bundles in automorphic forms, Shimura varieties and L-functions, I (Academic Press, New York, 1990), 284414.
[18]Mokrane, A., La suite spectrale des poids en cohomologie de Hyodo–Kato, Duke Math. J. 72 (1993), 301377.
[19]Ohta, M., On -adic representations attached to automorphic forms, Japan. J. Math. 9-1 (1982), 147.
[20]Rapoport, M. and Zink, T., Über die lokale Zetafunktion von Shimuravarietäten, Monodromiefiltration und verschwindende Zyklen in ungleicher Characteristik, Invent. Math. 68 (1982), 21201.
[21]Rogawski, J. and Tunnell, J., On Artin L-functions associated to Hilbert modular forms of weight one, Invent. Math. 74 (1983), 142.
[22]Saito, T., Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), 607620.
[23]Saito, T., Weight-monodromy conjecture for -adic representations associated to modular forms, A supplement to the paper  in The arithmetic and geometry of algebraic cycles, Banff, Alberta, 7–19 June 1998, eds B. B. Gordon et al. (Springer, 2000), 427–431.
[24]Taylor, R., On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), 265280.
[25]Taylor, R., On Galois representations associated to Hilbert modular forms. II, in Conference on Elliptic curve and modular forms, Chinese University of Hong Kong, 18–21 December 1993, eds J. Coates and S. T. Yau (International Press, Cambridge, MA, 1995), 185–191.
[26]Tsuji, T., p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math. 137 (1999), 233411.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed