No CrossRef data available.
Published online by Cambridge University Press: 26 May 2023
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group  $G$, there exists a critical constant
$G$, there exists a critical constant  $p_G \in [0,\infty ]$ such that
$p_G \in [0,\infty ]$ such that  $G$ admits a continuous affine isometric action on an
$G$ admits a continuous affine isometric action on an  $L_p$ space (
$L_p$ space ( $0< p<\infty$) with unbounded orbits if and only if
$0< p<\infty$) with unbounded orbits if and only if  $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on
$p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on  $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and
$L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and  $p>2$. We also prove the stability of this critical constant
$p>2$. We also prove the stability of this critical constant  $p_G$ under
$p_G$ under  $L_p$ measure equivalence, answering a question of Fisher.
$L_p$ measure equivalence, answering a question of Fisher.
 $L^1$ spaces, Invent. Math. 189 (2012), 143–148.10.1007/s00222-011-0363-2CrossRefGoogle Scholar
$L^1$ spaces, Invent. Math. 189 (2012), 143–148.10.1007/s00222-011-0363-2CrossRefGoogle Scholar $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108.Google Scholar
$l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108.Google Scholar $F\ell _q$ implies property
$F\ell _q$ implies property  $F\ell _p$ for
$F\ell _p$ for  $1< p< q<\infty$, Adv. Math. 307 (2017), 715–726.10.1016/j.aim.2016.11.025CrossRefGoogle Scholar
$1< p< q<\infty$, Adv. Math. 307 (2017), 715–726.10.1016/j.aim.2016.11.025CrossRefGoogle Scholar $l_p$-representations of Kazhdan groups, Preprint (2020), arXiv:2007.15168.Google Scholar
$l_p$-representations of Kazhdan groups, Preprint (2020), arXiv:2007.15168.Google Scholar $p$-Laplacians, Adv. Math. 341 (2019), 188–254.10.1016/j.aim.2018.10.035CrossRefGoogle Scholar
$p$-Laplacians, Adv. Math. 341 (2019), 188–254.10.1016/j.aim.2018.10.035CrossRefGoogle Scholar $L_p$-spaces, Ann. Inst. Fourier (Grenoble) 71 (2021), 1–26.10.5802/aif.3348CrossRefGoogle Scholar
$L_p$-spaces, Ann. Inst. Fourier (Grenoble) 71 (2021), 1–26.10.5802/aif.3348CrossRefGoogle Scholar $L_p$ compression, traveling salesmen, and stable walks, Duke Math. J. 157 (2011), 53–108.10.1215/00127094-2011-002CrossRefGoogle Scholar
$L_p$ compression, traveling salesmen, and stable walks, Duke Math. J. 157 (2011), 53–108.10.1215/00127094-2011-002CrossRefGoogle Scholar $L^p$-spaces, Compos. Math. 149 (2013), 773–792.10.1112/S0010437X12000693CrossRefGoogle Scholar
$L^p$-spaces, Compos. Math. 149 (2013), 773–792.10.1112/S0010437X12000693CrossRefGoogle Scholar $(T)$ with respect to non-commutative
$(T)$ with respect to non-commutative  $L_p$-spaces, Proc. Amer. Math. Soc. 140 (2012), 4259–4269.10.1090/S0002-9939-2012-11481-9CrossRefGoogle Scholar
$L_p$-spaces, Proc. Amer. Math. Soc. 140 (2012), 4259–4269.10.1090/S0002-9939-2012-11481-9CrossRefGoogle Scholar $L^p$ des variétés à courbure négative, cas du degré
$L^p$ des variétés à courbure négative, cas du degré  $1$. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 95–120.Google Scholar
$1$. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 95–120.Google Scholar $L_{p}$-spaces, Israel J. Math. 7 (1969), 9–15.10.1007/BF02771741CrossRefGoogle Scholar
$L_{p}$-spaces, Israel J. Math. 7 (1969), 9–15.10.1007/BF02771741CrossRefGoogle Scholar $L^{p}$-spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981), 41–50.10.1017/S0305004100058515CrossRefGoogle Scholar
$L^{p}$-spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981), 41–50.10.1017/S0305004100058515CrossRefGoogle Scholar $l^p$-spaces, Geom. Funct. Anal. 15 (2005), 1144–1151.10.1007/s00039-005-0533-8CrossRefGoogle Scholar
$l^p$-spaces, Geom. Funct. Anal. 15 (2005), 1144–1151.10.1007/s00039-005-0533-8CrossRefGoogle Scholar