Skip to main content Accessibility help
×
×
Home

Laurent polynomials, GKZ-hypergeometric systems and mixed Hodge modules

  • Thomas Reichelt (a1)
Abstract

We endow certain GKZ-hypergeometric systems with a natural structure of a mixed Hodge module, which is compatible with the mixed Hodge module structure on the Gauß–Manin system of an associated family of Laurent polynomials. As an application we show that the underlying perverse sheaf of a GKZ-system with rational parameter has quasi-unipotent local monodromy.

Copyright
References
Hide All
[Ado94]Adolphson, A., Hypergeometric functions and rings generated by monomials, Duke Math. J. 73 (1994), 269290.
[AS12]Adolphson, A. and Sperber, S., A-hypergeometric systems that come from geometry, Proc. Amer. Math. Soc. 140 (2012), 20332042.
[Bat93]Batyrev, V. V., Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori, Duke Math. J. 69 (1993), 349409.
[BGK+87]Borel, A., Grivel, P.-P., Kaup, B., Haefliger, A., Malgrange, B. and Ehlers, F., Algebraic D-modules, Perspectives in Mathematics, vol. 2 (Academic Press, Boston, MA, 1987).
[Bry86]Brylinski, J.-L., Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque (1986), 3134, 251; Géométrie et analyse microlocales.
[DE03]D’Agnolo, A. and Eastwood, M., Radon and Fourier transforms for D-modules, Adv. Math. 180 (2003), 452485.
[GKZ90]Gel’fand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Generalized Euler integrals and A-hypergeometric functions, Adv. Math. 84 (1990), 255271.
[GKZ94]Gel’fand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, resultants, and multidimensional determinants, in Mathematics: Theory & Applications (Birkhäuser, Boston, MA, 1994).
[HTT08]Hotta, R., Takeuchi, K. and Tanisaki, T., D-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236 (Birkhäuser, Boston, MA, 2008); Translated from the 1995 Japanese edition by Takeuchi.
[Kas81]Kashiwara, M., Quasi-unipotent constructible sheaves, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 757773.
[MMW05]Matusevich, L. F., Miller, E. and Walther, U., Homological methods for hypergeometric families, J. Amer. Math. Soc. 18 (2005), 919941.
[MS05]Miller, E. and Sturmfels, B., Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227 (Springer, New York, 2005).
[RS10]Reichelt, T. and Sevenheck, C., Logarithmic Frobenius manifolds, hypergeometric systems and quantum D-modules, J. Algebraic Geom. (2014), to appear, arXiv:1010.2118 [math.AG].
[RS12]Reichelt, T. and Sevenheck, C., Non-affine Landau–Ginzburg models and intersection cohomology, Preprint (2012), arXiv:1210.6527 [math.AG].
[Sai90]Saito, M., Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), 221333.
[Sai01]Saito, M., Isomorphism classes of A-hypergeometric systems, Compositio Math. 128 (2001), 323338.
[Sai07]Saito, M., Primitive ideals of the ring of differential operators on an affine toric variety, Tohoku Math. J. (2) 59 (2007), 119144.
[Sti98]Stienstra, J., Resonant hypergeometric systems and mirror symmetry, in Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) (World Scientific, River Edge, NJ, 1998), 412452.
[SV11]Schmid, W. and Vilonen, K., Hodge theory and unitary representations of reductive Lie groups, in Frontiers of mathematical sciences (International Press, Somerville, MA, 2011), 397420.
[SW08]Schulze, M. and Walther, U., Irregularity of hypergeometric systems via slopes along coordinate subspaces, Duke Math. J. 142 (2008), 465509.
[SW09]Schulze, M. and Walther, U., Hypergeometric D-modules and twisted Gauß–Manin systems, J. Algebra 322 (2009), 33923409.
[Wal07]Walther, U., Duality and monodromy reducibility of A-hypergeometric systems, Math. Ann. 338 (2007), 5574.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed