Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 17
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Obus, Andrew and Wewers, Stefan 2016. Wild ramification kinks. Research in the Mathematical Sciences, Vol. 3, Issue. 1,

    Amini, Omid Baker, Matthew Brugallé, Erwan and Rabinoff, Joseph 2015. Lifting harmonic morphisms II: Tropical curves and metrized complexes. Algebra & Number Theory, Vol. 9, Issue. 2, p. 267.

    Kaya, Celalettin 2015. On Ordinarity and Lifting Fibrations on Surfaces. Communications in Algebra, Vol. 43, Issue. 5, p. 1915.

    Obus, Andrew and Wewers, Stefan 2014. Cyclic extensions and the local lifting problem. Annals of Mathematics, Vol. 180, Issue. 1, p. 233.

    Pop, Florian 2014. The Oort Conjecture on lifting covers of curves. Annals of Mathematics, Vol. 180, Issue. 1, p. 285.

    Partsch, Holger 2013. Deformations of elliptic fiber bundles in positive characteristic. Nagoya Mathematical Journal, Vol. 211, p. 79.

    Kaya, Celalettin 2012. On Lifting Fibrations of Genus One. Communications in Algebra, Vol. 40, Issue. 3, p. 1173.

    Corry, Scott 2010. Galois covers of the open p-adic disc. manuscripta mathematica, Vol. 131, Issue. 1-2, p. 43.

    Obus, Andrew and Pries, Rachel 2010. Wild tame-by-cyclic extensions. Journal of Pure and Applied Algebra, Vol. 214, Issue. 5, p. 565.

    Tossici, Dajano 2010. Models of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals=""><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>,</mml:mo><mml:mi>K</mml:mi></mml:mrow></mml:msub></mml:math> over a discrete valuation ring. Journal of Algebra, Vol. 323, Issue. 7, p. 1908.

    Tossici, D. 2010. Effective Models and Extension of Torsors Over a Discrete Valuation Ring of Unequal Characteristic. International Mathematics Research Notices,

    Brewis, Louis Hugo 2008. Liftable D 4-covers. manuscripta mathematica, Vol. 126, Issue. 3, p. 293.

    Kontogeorgis, Aristides 2007. On the tangent space of the deformation functor of curves with automorphisms. Algebra & Number Theory, Vol. 1, Issue. 2, p. 119.

    Bertin, José and Mézard, Ariane 2006. Déformations formelles de revêtements: un principe local-global. Israel Journal of Mathematics, Vol. 155, Issue. 1, p. 281.

    Cornelissen, Gunther and Mézard, Ariane 2006. Relèvements des revêtements de courbes faiblement ramifiés. Mathematische Zeitschrift, Vol. 254, Issue. 2, p. 239.

    Green, Barry 2004. Realizing deformations of curves using Lubin-Tate formal groups. Israel Journal of Mathematics, Vol. 139, Issue. 1, p. 139.

    Henrio, Yannick 1999. Automorphismes d'ordre p des couronnes p-adiques ouvertes. Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Vol. 329, Issue. 1, p. 47.


Liftings of Galois Covers of Smooth Curves

  • DOI:
  • Published online: 01 September 1998

Let (C,G) be a smooth irreducible projective curve of genus g over an algebraically closed field k of chararacteristic p>0 and G be a finite group of automorphisms of C. It is well known that here, contrary to the characteristic 0 case, Hurwitz‘s bound |G|[les ] 84(g-1) doesn‘t hold in general; in such cases this gives an obstruction to obtaining a smooth galois lifting of (C,G) to characteristic 0. We shall give new obstructions of local nature to the lifting problem, even in the case where G is abelian. In the case where the inertia groups are p$^ae$-cyclic with a[les ] 2 and (e,p)=1, we shall prove that smooth galois liftings exist over W(k)[$^p^^2$√1].

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *