Skip to main content Accessibility help

On the family of affine threefolds $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}x^m y= F(x, z, t)$

  • Neena Gupta (a1)

Let $k$ be a field and $\mathbb{V}$ the affine threefold in $\mathbb{A}^4_k$ defined by $x^m y=F(x, z, t)$ , $m \ge 2$ . In this paper, we show that $\mathbb{V} \cong \mathbb{A}^3_k$ if and only if $f(z, t): = F(0, z, t)$ is a coordinate of $k[z, t]$ . In particular, when $k$ is a field of positive characteristic and $f$ defines a non-trivial line in the affine plane $\mathbb{A}^2_k$ (we shall call such a $\mathbb{V}$ as an Asanuma threefold), then $\mathbb{V}\ncong \mathbb{A}^3_k$ although $\mathbb{V} \times \mathbb{A}^1_k \cong \mathbb{A}^4_k$ , thereby providing a family of counter-examples to Zariski’s cancellation conjecture for the affine 3-space in positive characteristic. Our main result also proves a special case of the embedding conjecture of Abhyankar–Sathaye in arbitrary characteristic.

Hide All
[Abh77]Abhyankar, S., Lectures on expansion techniques in algebraic geometry (Notes by Balwant Singh), Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57 (Tata Institute of Fundamental Research, Bombay, 1977).
[AEH72]Abhyankar, S., Eakin, P. and Heinzer, W., On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972), 310342.
[Asa87]Asanuma, T., Polynomial fibre rings of algebras over Noetherian rings, Invent. Math. 87 (1987), 101127.
[Asa94]Asanuma, T., Non-linearizable algebraic group actions on An, J. Algebra 166 (1994), 7279.
[BD94]Bhatwadekar, S. M. and Dutta, A. K., Linear planes over a discrete valuation ring, J. Algebra 166 (1994), 393405.
[Cra05]Crachiola, A. J., The hypersurface x + x 2y + z 2 + t 3 = 0 over a field of arbitrary characteristic, Proc. Amer. Math. Soc. 134 (2005), 12891298.
[DHM01]Derksen, H., Hadas, O. and Makar-Limanov, L., Newton polytopes of invariants of additive group actions, J. Pure Appl. Algebra 156 (2001), 187197.
[FR05]Freudenburg, G. and Russell, P., Open problems in affine algebraic geometry, in Affine algebraic geometry, Contemporary Mathematics, vol. 369 (American Mathematical Society, Providence, RI, 2005), 130.
[Fuj79]Fujita, T., On Zariski problem, Proc. Japan Acad. 55 (1979), 106110.
[Gan11]Ganong, R., The pencil of translates of a line in the plane, in Affine algebraic geometry, CRM Proceedings Lecture Notes, vol. 54 (American Mathematical Society, Providence, RI, 2011), 5771.
[Gup14]Gupta, N., On the cancellation problem for the affine space A3 in characteristic p, Invent. Math. 195 (2014), 279288, doi:10.1007/s00222-013-0455-2.
[Kal02]Kaliman, S., Polynomials with general ℂ2-fibers are variables, Pacific J. Math. 203 (2002), 161190.
[KVZ04]Kaliman, S., Vénéreau, S. and Zaidenberg, M., Simple birational extensions of the polynomial algebra ℂ[3], Trans. Amer. Math. Soc. 356 (2004), 509555.
[Mak96]Makar-Limanov, L., On the hypersurface x + x 2y + z 2 + t 3 = 0 in ℂ4 or a ℂ3-like threefold which is not ℂ3, Israel J. Math. B 96 (1996), 419429.
[Mak01]Makar-Limanov, L., On the group of automorphism of a surface x ny = P (z), Israel J. Math. 121 (2001), 113123.
[MS80]Miyanishi, M. and Sugie, T., Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980), 1142.
[Nag72]Nagata, M., On automorphism group of k[x, y], Lectures in Mathematics, vol. 5 (Kyoto University, Tokyo, 1972).
[Rus76]Russell, P., Simple birational extensions of two dimensional affine rational domains, Compositio Math. 33 (1976), 197208.
[Rus81]Russell, P., On affine-ruled rational surfaces, Math. Ann. 255 (1981), 287302.
[RS79]Russell, P. and Sathaye, A., On finding and cancelling variables in k[X, Y, Z], J. Algebra 57 (1979), 151166.
[Sat76]Sathaye, A., On linear planes, Proc. Amer. Math. Soc. 56 (1976), 17.
[Sat83]Sathaye, A., Polynomial ring in two variables over a D.V.R.: A criterion, Invent. Math. 74 (1983), 159168.
[Seg56]Segre, B., Corrispondenze di Möbius e trasformazioni cremoniane intere, Atti Accad. Sci. Torino. Cl. Sci. Fis. Mat. Natur. 91 (1956/1957), 319 (in Italian).
[Sri08]Srinivas, V., Algebraic K-theory (Birkhäuser, Boston, 2008).
[VD74]Veǐsfeǐler, B. and Dolgačev, I.  V., Unipotent group schemes over integral rings, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 757799 (in Russian).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed