Skip to main content Accessibility help
×
×
Home

Remarks on endomorphisms and rational points

  • E. Amerik (a1), F. Bogomolov (a2) (a3) and M. Rovinsky (a4) (a5)

Abstract

Let X be an algebraic variety and let f:X−−→X be a rational self-map with a fixed point q, where everything is defined over a number field K. We make some general remarks concerning the possibility of using the behaviour of f near q to produce many rational points on X. As an application, we give a simplified proof of the potential density of rational points on the variety of lines of a cubic fourfold, originally proved by Claire Voisin and the first author in 2007.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Remarks on endomorphisms and rational points
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Remarks on endomorphisms and rational points
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Remarks on endomorphisms and rational points
      Available formats
      ×

Copyright

References

Hide All
[Ame09]Amerik, E., A computation of invariants of a rational self-map, Ann. Fac. Sci. Toulouse Math (6) 18 (2009), 445457, arXiv:0707.3947.
[AC08]Amerik, E. and Campana, F., Fibrations méromorphes sur certaines variétés à fibré canonique trivial, Pure Appl. Math. Q. 4 (2008), 509545.
[AV08]Amerik, E. and Voisin, C., Potential density of rational points on the variety of lines of a cubic fourfold, Duke Math. J. 145 (2008), 379408, arXiv:0707.3948.
[Arn88]Arnold, V. I., Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, vol. 250, second edition (Springer, New York, 1988).
[AM69]Atiyah, M. F. and Macdonald, I. G., Introduction to commutative algebra (Addison-Wesley, Reading, MA, 1969).
[Bea83]Beauville, A., Some remarks on Kähler manifolds with c 1=0, in Classification of algebraic and analytic manifolds (Katata, 1982), Progress in Mathematics, vol. 39 (Birkhäuser Boston, Boston, MA, 1983), 126.
[BD85]Beauville, A. and Donagi, R., La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I 301 (1985), 703706.
[BT00]Bogomolov, F. and Tschinkel, Yu., Density of rational points on elliptic K3 surfaces, Asian J. Math. 4 (2000), 351368.
[Cam04]Campana, F., Orbifolds, special varieties and classification theory, Ann. Inst. Fourier (Grenoble) 54 (2004), 499630.
[Che]Chen, X., Self rational maps of K3 surfaces, arXiv:math/1008.1619.
[CG72]Clemens, H. and Griffiths, P., The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281356.
[Eis95]Eisenbud, D., Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, vol. 150 (Springer, New York, 1995).
[Fak03]Fakhruddin, N., Questions on self maps of algebraic varieties, J. Ramanujan Math. Soc. 18 (2003), 109122, arXiv:math/0212208.
[GT09]Ghioca, D. and Tucker, T., Periodic points, linearizing maps, and the dynamical Mordell–Lang problem, J. Number Theory 129 (2009), 13921403.
[HT00]Hassett, B. and Tschinkel, Yu., Abelian fibrations and rational points on symmetric products, Internat. J. Math. 11 (2000), 11631176.
[HT]Hassett, B. and Tschinkel, Yu., Flops on holomorphic symplectic fourfolds and determinantal cubic hypersurfaces, arXiv:0805.4162.
[HY83]Herman, M. and Yoccoz, J.-C., Generalizations of some theorems of small divisors to non-Archimedean fields, in Geometric dynamics (Rio de Janeiro, 1981), Lecture Notes in Mathematics, vol. 1007 (Springer, Berlin, 1983), 408447.
[Jou78]Jouanolou, J.-P., Hypersurfaces solutions d’une équation de Pfaff analytique, Math. Ann. 232 (1978), 239245.
[Kob98]Kobayashi, S., Hyperbolic complex spaces (Springer, Berlin, Heidelberg, 1998).
[NZ07]Nakayama, N. and Zhang, D.-Q., Building blocks of étale endomorphisms of complex projective manifolds, Preprint no. 1577 (Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 2007), http://www.kurims.kyoto-u.ac.jp/preprint/preprint_y2007.html 399.
[Pac03]Pacienza, G., Rational curves on general projective hypersurfaces, J. Algebraic Geom. 12 (2003), 245267.
[Poi28]Poincaré, H., Œuvres, 1 (Gauthier-Villars, Paris, 1928), 36129.
[Ron08]Rong, F., Linearization of holomorphic germs with quasi-parabolic fixed points, Ergod. Th. & Dynam. Sys. 28 (2008), 979986.
[Ser92]Serre, J.-P., Topics in Galois theory (Jones and Bartlett, Boston, 1992).
[Ter85]Terasoma, T., Complete intersections with middle Picard number 1 defined over ℚ, Math. Z. 189 (1985), 289296.
[vL07]van Luijk, R., K3 surfaces with Picard number one and infinitely many rational points, Algebra Number Theory 1 (2007), 115.
[Voi98]Voisin, C., A correction: ‘On a conjecture of Clemens on rational curves on hypersurfaces’, J. Differential Geom. 49 (1998), 601611.
[Voi04]Voisin, C., Intrinsic pseudo-volume forms and K-correspondences, in The Fano Conference (Università Torino, Turin, 2004), 761–792.
[Yu90]Yu, K., Linear forms in p-adic logarithms. II, Compositio Math. 74 (1990), 15113.
[Zha06]Zhang, S.-W., Distributions in algebraic dynamics, in Surveys in differential geometry, Vol. X (International Press, Somerville, MA, 2006), 381430.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed