Skip to main content Accessibility help
×
×
Home

Test configurations and Okounkov bodies

  • David Witt Nyström (a1)
Abstract

We associate to a test configuration for a polarized variety a filtration of the section ring of the line bundle. Using the recent work of Boucksom and Chen we get a concave function on the Okounkov body whose law with respect to Lebesgue measure determines the asymptotic distribution of the weights of the test configuration. We show that this is a generalization of a well-known result in toric geometry. As an application, we prove that the pushforward of the Lebesgue measure on the Okounkov body is equal to a Duistermaat–Heckman measure of a certain deformation of the manifold. Via the Duisteraat–Heckman formula, we get as a corollary that in the special case of an effective ℂ×-action on the manifold lifting to the line bundle, the pushforward of the Lebesgue measure on the Okounkov body is piecewise polynomial.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Test configurations and Okounkov bodies
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Test configurations and Okounkov bodies
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Test configurations and Okounkov bodies
      Available formats
      ×
Copyright
References
Hide All
[Ber09]Berndtsson, B., Probability measures associated to geodesics in the space of Kähler metrics, Preprint (2009), math.DG/0907.1806.
[BC11]Boucksom, S. and Chen, H., Okounkov bodies of filtered linear series, Compositio Math. 147 (2011), 12051229.
[BG81]Boutet de Monvel, L. and Guillemin, V., The spectral theory of Toeplitz operators, Annals of Mathematics Studies, vol. 99 (Princeton University Press, Princeton, NJ, 1981).
[Don01]Donaldson, S. K., Scalar curvature and projective embeddings. I., J. Differential Geom. 59 (2001), 479522.
[Don02]Donaldson, S. K., Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289349.
[Don05]Donaldson, S. K., Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005), 453472.
[DH82]Duistermaat, J. J. and Heckman, G. J., On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259268.
[KK08]Kaveh, K. and Khovanskii, A., Algebraic equations and convex bodies, in Perspectives in Analysis, Topology and Geometry (in honor of Oleg Viro), Progr. Math., to appear, Preprint (2008), math.AG/0812.4688v1.
[KK09]Kaveh, K. and Khovanskii, A., Newton convex bodies, semigroups of integral points, graded algebras and intersection theory, Preprint (2009), math.AG/0904.3350v2.
[KK10]Kaveh, K. and Khovanskii, A., Convex bodies associated to actions of reductive groups, Preprint (2010), math.AG/1001.4830v1.
[Laz04]Lazarsfeld, R., Positivity in algebraic geometry. I. Classical setting: line bundles and linear series (Springer, Berlin, 2004).
[LM09]Lazarsfeld, R. and Mustaţă, M., Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783835.
[Mab86]Mabuchi, T., K-energy maps integrating Futaki invariants, Tohoko Math. J. (2) 38 (1986), 575593.
[Oko96]Okounkov, A., Brunn–Minkowski inequality for multiplicities, Invent. Math. 125 (1996), 405411.
[PS07]Phong, D. H. and Sturm, J., Test configurations for K-stability and geodesic rays, J. Symplectic Geom. 5 (2007), 221247.
[PS08]Phong, D. H. and Sturm, J., Lectures on stability and constant scalar curvature, Preprint (2008), math.DG/0801.4179.
[PS10]Phong, D. H. and Sturm, J., Regularity of geodesic rays and Monge–Ampere equations, Proc. Amer. Math. Soc. 138 (2010), 36373650.
[RT06]Ross, J. and Thomas, R., An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), 429466.
[RT07]Ross, J. and Thomas, R., A study of the Hilbert–Mumford criterion for the stability of projective varieties, J. Algebraic Geom. 16 (2007), 201255.
[Sem92]Semmes, S., Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495550.
[Tia97]Tian, G., Kahler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 137.
[Wit09]Witt Nyström, D., Transforming metrics on a line bundle to the Okounkov body, Preprint (2009), math.CV/0903.5167.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed