Hostname: page-component-54dcc4c588-b5cpw Total loading time: 0 Render date: 2025-09-11T08:13:21.279Z Has data issue: false hasContentIssue false

Tilting sheaves for real groups and Koszul duality

Published online by Cambridge University Press:  11 September 2025

Andrei Ionov
Affiliation:
The University of Texas at Austin Department of Mathematics - PMA 8.100, 2515 Speedway, Stop C1200, Austin, TX 78712, USA andrei.ionov@austin.utexas.edu1
Zhiwei Yun
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA zyun@mit.edu1

Abstract

For a certain class of real analytic varieties with Lie group actions, we develop a theory of (free-monodromic) tilting sheaves, and apply it to flag varieties stratified by real group orbits. For quasi-split real groups, we construct a fully faithful embedding of the category of tilting sheaves to a real analog of the category of Soergel bimodules, establishing real group analogs of Soergel’s structure theorem and the endomorphism theorem. We apply these results to give a purely geometric proof of the main result of Bezrukavnikov and Vilonen [Koszul duality for quasi-split real groups, Invent. Math. 226 (2021), 139–193], which proves Soergel’s conjecture [Langlands’ philosophy and Koszul duality, in Algebra – representation theory (Constanta, 2000), NATO Science Series II: Mathematics, Physics and Chemistry, vol. 28 (Kluwer Academic Publishers, Dordrecht, 2001), 379–414] for quasi-split groups.

Information

Type
Research Article
Copyright
© The Author(s), 2025. The publishing rights in this article are licensed to Foundation Compositio Mathematica under an exclusive licence

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adams, J. and du Cloux, F., Algorithms for representation theory of real reductive groups, J. Inst. Math. Jussieu. 8 (2009), 209259.10.1017/S1474748008000352CrossRefGoogle Scholar
Beilinson, A., Bernstein, J. and Deligne, P., Faisceaux pervers, in Analysis and topology on singular spaces I (Luminy, 1981), Astérisque, vol. 100 (Société Mathématique de France, Paris, 1982), 5, 171.Google Scholar
Beilinson, A., Bezrukavnikov, R. and Mirković, I., Tilting exercises, Mosc. Math. J. 4 (2004), 547557,782.10.17323/1609-4514-2004-4-3-547-557CrossRefGoogle Scholar
Beilinson, A. and Ginzburg, V., Wall-crossing functors and D-modules, Represent. Theory 3 (1999), 131.10.1090/S1088-4165-99-00063-1CrossRefGoogle Scholar
Beilinson, A., Ginzburg, V. and Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996), 473527.10.1090/S0894-0347-96-00192-0CrossRefGoogle Scholar
Bernstein, J. and Lunts, V., Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578 (Springer Verlag, Berlin, 1994).Google Scholar
Bezrukavnikov, R., written by T. Kanstrup, Canonical basis and representation categories, MIT course notes (2013), https://math.mit.edu/~bezrukav/old/Course_RT.pdf.Google Scholar
Bezrukavnikov, R. and Riche, S., A topological approach to Springer theory, in Interactions between representation theory and algebraic geometry (Birkhäuser, 2019).Google Scholar
Bezrukavnikov, R. and Vilonen, K., Koszul duality for quasi-split real groups, Invent. Math. 226 (2021), 139193.10.1007/s00222-021-01050-4CrossRefGoogle Scholar
Bezrukavnikov, R. and Yun, Z., On Koszul duality for Kac-Moody groups, Represent. Theory 17 (2013), 198.10.1090/S1088-4165-2013-00421-1CrossRefGoogle Scholar
Borel, A. and Springer, T. A., Rationality properties of linear algebraic groups II, Tohoku Math. J. 20 (1968), 443497.10.2748/tmj/1178243073CrossRefGoogle Scholar
Gaitsgory, D., The notion of category over an algebraic stack, Preprint (2005), arXiv: math/0507192.Google Scholar
Goresky, M., Kottwitz, R. and MacPherson, R., Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1997), 2583.10.1007/s002220050197CrossRefGoogle Scholar
Hecht, H., Milicić, D., Schmid, W. and Wolf, J. A., Localization and standard modules for real semisimple Lie groups I, Invent. Math. 90 (1987), 297332.10.1007/BF01388707CrossRefGoogle Scholar
Helgason, S., Some results on invariant differential operators on symmetric spaces, Amer. J. Math. 114 (1992), 789811.10.2307/2374798CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292 (Springer, 1990).Google Scholar
Kashiwara, M. and Schmid, W., Quasi-equivariant $\mathcal{D}$ -modules, equivariant derived category, and representations of reductive Lie groups, in Lie theorem and geometry, in honor of Bertram Kostant, Progress in Mathematics, vol. 123 (Birkhäuser, 1994), 457488.Google Scholar
Lusztig, G. and Vogan, D., Singularities of closures of $K$ -orbits on flag manifolds, Invent. Math. 71 (1983), 365379.10.1007/BF01389103CrossRefGoogle Scholar
Lusztig, G. and Yun, Z., Endoscopy for Hecke categories, character sheaves and representations, Forum Math. Pi 8 (2020), e12.10.1017/fmp.2020.9CrossRefGoogle Scholar
Mirković, I., Uzawa, T. and Vilonen, K., Matsuki correspondence for sheaves, Invent. Math. 109 (1992), 231245.10.1007/BF01232026CrossRefGoogle Scholar
Richardson, R. W. and Springer, T. A., The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), 389436.10.1007/BF00147354CrossRefGoogle Scholar
Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math Z. 208 (1991), 209223.10.1007/BF02571521CrossRefGoogle Scholar
Soergel, W., Kategorie O, perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc. 3 (1990), 421445.Google Scholar
Soergel, W., Langlands’ philosophy and Koszul duality, in Algebra – representation theory (Constanta, 2000), NATO Science Series II: Mathematics, Physics and Chemistry, vol. 28 (Kluwer Academic Publishers, Dordrecht, 2001), 379, 414.Google Scholar
Vilonen, K., Geometric methods in representation theory, in Representation theory of Lie groups, IAS/Park City Mathematics Series, vol. 8, eds J. Adams and D. Vogan (American Mathematical Society, 2000), 241290.Google Scholar
Vogan, D., Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), 381417.10.1007/BF01389104CrossRefGoogle Scholar
Vogan, D., Irreducible characters of semisimple Lie groups IV. Character-multiplicity duality, Duke Math. J. 49 (1982), 9431073.10.1215/S0012-7094-82-04946-8CrossRefGoogle Scholar
Yun, Z., Weights of mixed tilting sheaves and geometric Ringel duality, Selecta Math. (N.S.) 14 (2009), 299320.10.1007/s00029-008-0066-8CrossRefGoogle Scholar